10.1002/anie.201810541
Angewandte Chemie International Edition
COMMUNICATION
[1]
a) K. K. Ng, G. Zheng, Chem. Rev. 2015, 115, 11012-11042; b) L.
Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Chem. Rev. 2014, 114,
10869-10939; c) D. Y. Lee, J. Y. Kim, Y. Lee, S. Lee, W Miao, H. S.
Kim, J.-J. Min, S. Jon, Angewandte Chemie, 2017, 129, 13872-13876;
Angew. Chem. Int. Ed. 2017, 56, 13684-13688; d) L. Du, H. Qin, T. Ma,
T. Zhang, D. Xing, ACS Nano, 2017,11, 8930–8943.
in the tumor region and successfully exterminate the tumor
tissue through PTT in vivo.
Finally, the biosecurity of QDI-NPs was thoroughly verified
in healthy mice. A further aspect is the ultra-small size of the
QDI-NPs which renders them potential candidates for
biomedical applications owing to proper clearance from the body
and minimum long-term biotoxicity. The blood circulation and
tissue bio-distribution were studied through measuring the
concentrations of QDI-NPs (Figure S21). The results, as well as
the photoacoustic intensity of major organs (Figure S22),
confirmed the excellent metabolism of QDI-NPs in the body.
Further, the blood circulation and tissue distribution failed to
show any influence of QDI-NPs on the body. We determined the
long-term toxicity of QDI-NPs in major organs after intravenous
injection (45 mg·kg-1) in healthy mice. At 30 day post-injection,
the major organs were harvested from the mice treated with
[2]
[3]
a) R. Weissleder, Nat. Rev. Cancer. 2002, 2, 11-18; b) B. Shi, K. Jie, Y.
Zhou, J. Zhou, D. Xia, F. Huang, J. Am. Chem. Soc. 2015, 138, 80-83.
a) X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, J. Am. Chem.
Soc. 2006, 128, 2115-2120; b) C. Liang, S. Diao, C. Wang, H. Gong, T.
Liu, G. Hong, X. Shi, H. Dai, Z. Liu, Adv. Mater. 2014, 26, 5646-5652.
c) X. Song, H. Gong, T. Liu, L. Cheng, C. Wang, X. Sun, C. Liang, Z.
Liu, Small 2014, 10, 4362-4370.
[4]
[5]
a) Q. Dong, X. Wang, X. Hu, L. Xiao, L. Zhang, L. Song, M. Xu, Y. Zou,
L. Chen, Z. Chen, W. Tan, Angew. Chem. 2018, 130, 183-187; Angew.
Chem. Int. Ed. 2018, 57, 177-181; b) D. Y. Lee, J. Y. Kim, Y. Lee, S.
Lee, W. Miao, H. S. Kim, J. J. Min, S. Jon, Angew. Chem. 2017, 129,
13872-13876; Angew. Chem. Int. Ed. 2017, 56, 13684-13688.
a) L. L. Lock, C. D. Reyes, P. Zhang, H. Cui, J. Am. Chem. Soc. 2016,
138, 3533-3540; b) Prog. Polym. Sci., 2015, 46, 25-54; c) G. Wei, Z. Su,
N. P. Reynolds, P. Arosio, I. W. Hamley, E. Gazit, R. Mezzenga, Chem.
Soc. Rev. 2017, 46, 4661-4708.
QDI-NPs and PBS as
a
control, respectively. The
histopathological studies through the H&E staining method
revealed no noticeable damage or inflammation in the organs
from both groups (Figure S23). In addition, the analysis of blood
biochemistry confirmed that the liver and kidney functions were
not affected by QDI-NPs (Figure S24). One concludes that the
ultra-small QDI-NPs reveal a proper clearance from the body
without biotoxicity in vivo.
[6]
[7]
Q. Zou, M. Abbas, L. Zhao, S. Li, G. Shen, X. Yan, J. Am. Chem.Soc.
2017, 139, 1921-1927.
a) S. Zhang, W. Guo, J. Wei, C. Li, X. J. Liang, M. Yin, ACS Nano,
2017, 11, 3797-3805; b) S. Zhang, J. Li, J. Wei, M. Yin, Sci. Bull. 2018,
63, 101-107.
[8]
[9]
G. Yang, D. Yang, P. Yang, R. Lv, C. Li, C. Zhong, F. He, S. Gai, J. Lin,
Chem. Mater. 2015, 27, 7957-7968.
In summary, we demonstrated a strong photothermal effect
for the QDI-cored star-macromolecule P(QDI) with multi-PEG
chains for phototheranostic applications. P(QDI) shows strong
NIR absorption and can assemble into QDI-NPs with ultra-small
size of approximately 10 nm in aqueous solutions. With their
excellent stability against periodic laser-irradiation, the
assembled QDI-NPs exhibit a high and stable PTCE of up to
64.7 ± 4%, thus qualifying them as promising photothermal
agents for cancer therapy. The QDI-NPs could efficiently
passively target tumors and visualize the tumor outline with high
spatial resolution in vivo. Consequently, the systematic PTT of
cancer was successfully implemented in vitro and in vivo. Most
importantly, QDI-NPs present proper clearance from the body
without biotoxicity according to pharmacokinetic studies in
healthy mice. This investigation provides firm evidence that the
hydrophobic QDI molecule can be applied as a biomedical
photothermal agent after appropriate chemical modification.
These NIR-absorbing QDI-NPs, as stable and powerful
photothermal species, appear to enrich the toolbox of
phototheranostics and to act as useful therapeutic systems in
future biomedical applications.
L. Chen, C. Li, K. Müllen, J. Mater. Chem. C 2014, 2, 1938-1956.
[10] a) Y. Zheng, S. You, C. Ji, M. Yin, W. Yang, J. Shen, Adv. Mater., 2016,
28, 1375-1380; b) W. Cheng, H. Cheng, S. Wan, X. Zhang, M. Yin,
Chem. Mater., 2017, 29, 4218-4226; c) H. Xia, H. Fu, Y. Zhang, K. C.
Shih, Y. Ren, M. Anuganti, M. Nieh, J. Cheng, Y. Lin, J. Am. Chem.
Soc. 2017, 139, 11106-11116;
[11] a) R. A. Petros, J. M. DeSimone, Nat. Rev. Drug Discov. 2010, 9, 615-
627; b) M. Elsabahy, K. L. Wooley, Chem. Soc. Rev. 2012, 41, 2545-
2561.
[12] a) C. Ji, Q. Gao, X. Dong, W. Yin, Z. Gu, Z. Gan, Y. Zhao, M. Yin,
Angew. Chem. 2018, 130, 11554-11558; Angew. Chem. Int. Ed., 2018,
57, 11384-11388; b) Y. Zhang, W. Chen, C. Yang, Q. Fan, W. Wu, X.
Jiang, J. Contr. Rel. 2016, 237, 115-124; c) V. P. Chauhan, T.
Stylianopoulos, J. D. Martin, Z. Popović, O. Chen, W. S. Kamoun, M. G.
Bawendi, D. Fukumura, R. K. Jain, Nat. Nanotechnol. 2012, 7, 383-388;
d) H. Su, J. M. Koo, H. Cui, J. Contr. Rel. 2015, 219, 383-395.
[13] a) Y. Cai, P. Liang, Q. Tang, X. Yang, W. Si, W. Huang, Q. Zhang, X.
Dong, ACS Nano 2017, 11, 1054-1063; b) Y. Lyu, D. Cui, H. Sun, Y.
Miao, H. Duan, K. Pu, Angew. Chem. 2017, 129, 9283-9287; Angew.
Chem. Int. Ed. 2017, 56, 9155-9159; c) Q. Zou, M. Abbas, L. Zhao, S.
Li, G. Shen, X. Yan, J. Am. Chem. Soc. 2017, 139, 1921-1927.
[14] a) G. Lv, W. Guo, W. Zhang, T. Zhang, S. Li, S. Chen, A. S. Eltahan, D.
Wang, Y. Wang, J. Zhang, ACS Nano 2016, 10, 9637-9645; b) W. Tao,
X. Ji, X. Xu, M. A. Islam, Z. Li, S. Chen, P. E. Saw, H. Zhang, Z.
Bharwani, Z. Guo, J. Shi, O. C. Farokhzad, Angew. Chem. 2017, 129,
12058-12062; Angew. Chem. Int. Ed. 2017, 56, 11896-11900.
[15] a) H. Quante,; K. Müllen, Angew. Chem. 1995, 107, 1487-1489; Angew.
Chem. Int. Ed. 1995, 34, 1323-1325; b) Y. Avlasevich, S. Müller, P. Erk,
K. Müllen, Chem. Eur. J. 2007, 13, 6555-6561.
Acknowledgements
The National Natural Science Foundation of China (21774007,
21574009, 51873009 and 51573012), Fundamental Research
Funds for the Central Universities (PT1811), Beihuazhongri United
Fund (PYBZ1822), and the Max-Planck-Society are acknowledged
for financial support and the Joannes-Gutenberg University for a
scholarship from the Gutenberg Research College.
[16] F. Nolde, W. Pisula, S. Müller, C. Kohl, K. Müllen, Chem. Mater. 2006,
18, 3715-3725.
[17] H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G.
Bawendi, J. V. Frangioni, Nat. Biotechnol. 2007, 25, 1165-1170.
Conflict of interest
The authors declare no conflict of interest.
Keywords: NIR-absorption • quaterrylenediimide • photoacoustic
imaging • photothermal conversion efficiency • pharmacokinetics
Page 4
This article is protected by copyright. All rights reserved.