4844
D. R. Williams et al. / Tetrahedron Letters 43 (2002) 4841–4844
42, 801; (c) Ghosh, A. K.; Wang, Y. Tetrahedron Lett.
22. Our preparation of the requisite alkyne began with the
copper-catalyzed oxirane opening of the known THP
ether of (R)-(+)-glycidol (Aldrich) with subsequent O-
alkylation with allyl bromide to provide ether (i)
Methanolysis of the THP ether, Dess–Martin oxidation
and reaction with the Bestmann acyl-DAMP reagent
(Muller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J.
Synlett 1996, 521) directly provided alkyne (ii) In the
course of our studies, a similar pathway was reported by
Ghosh (see Ref. 7e).
2000, 41, 2319; (d) Nadolski, G. T.; Davidson, B. S.
Tetrahedron Lett. 2001, 42, 797; (e) Ghosh, A. K.; Wang,
Y. Tetrahedron Lett. 2000, 41, 4705; (f) Dorling, E. K.;
8
Ohler, E.; Mulzer, J. Tetrahedron Lett. 2000, 41, 6323; (g)
Mulzer, J.; Hanbauer, M. Tetrahedron Lett. 2000, 41, 33;
(h) Ghosh, A. K.; Mathivanan, P.; Cappiello, J. Tetra-
hedron: Asymmetry 1998, 9, 1; (i) Paterson, I.; De Savi,
C.; Tudge, M. Org. Lett. 2001, 3, 213; (j) Shimizu, A.;
Nishiyama, S. Synlett 1998, 1209; (k) Shimizu, A.;
Nishiyama, S. Tetrahedron Lett. 1997, 38, 6011; (l)
Nadolski, G. T.; Davidson, B. S. Tetrahedron Lett. 2001,
42, 797.
H
H
1. Amberlyst, MeOH
2. Dess-Martin Ox.
3. acyl-DAMP
H
O
O
THPO
8. (a) Williams, D. R.; Brooks, D. A.; Meyer, K. G.; Clark,
M. P. Tetrahedron Lett. 1998, 39, 7251; (b) Williams, D.
R.; Meyer, K. G. J. Am. Chem. Soc. 2001, 123, 765; (c)
Williams, D. R.; Myers, B. J.; Mi, L. Org. Lett. 2000, 2,
945; (d) Williams, D. R.; Brooks, D. A.; Berliner, M. A.
J. Am. Chem. Soc. 1999, 121, 4924.
CH3
CH3
K2CO3, MeOH
75% (3 steps)
ii
i
23. Previous studies in our laboratories have correlated the
relative stereochemical (syn- or anti-) assignments of
9. Williams, D. R.; Kissel, W. S. J. Am. Chem. Soc. 1998,
120, 11198.
1
these diol derivatives with observations of the H-NMR
chemical shift differences between the pair of
diastereotopic benzylic protons on the C19 PMB ether.
Typically, the syn-diastereomer was characterized as hav-
10. (a) Williams, D. R.; Kissel, W. S.; Li, J. J. Tetrahedron
Lett. 1998, 39, 8593; (b) Williams, D. R.; Kissel, W. S.;
Li, J. J.; Mullins, R. J. Tetrahedron Lett. 2002, 43, 3723.
11. Ferrier, R. J.; Middleton, S. Chem. Rev. 1993, 93, 2779.
12. For a review: Yamamoto, Y. Angew Chem., Int. Ed.
1986, 25, 947.
13. Danishefsky, S.; Kitahara, T. J. Am. Chem. Soc. 1974,
96, 7807.
14. Jacobsen, E. N.; Schaus, S. E.; Bra˚nalt, J. J. Org. Chem.
ing
a
larger DAB than the corresponding anti-
diastereomer.
24. The ratio of diastereomeric alcohols was calculated by
integration of the 1H NMR signals for each of the
diastereotopic methylene protons of the C19 PMB ether.
Major: l 4.62 (A of AB, JAB=10.9 Hz) l 4.43 (B of AB,
J
AB=10.9 Hz). Minor: l 4.57 (A of AB, JAB=11.2 Hz),
1998, 63, 403.
l 4.50 (B of AB, JAB=11.2 Hz).
15. The diastereomeric ratio was determined by the integra-
tion of NMR signals for the diastereotopic pair of C10
methylene hydrogens in 8. Chemical shifts for the major
isomer 8 were observed at l 1.91 and l 1.41 whereas the
minor (C9) isomer exhibited a pair of multiplets at l 1.79
and l 1.61.
16. Allenylstannane 12 was prepared through mesylation of
the corresponding propargylic alcohol followed by SN2%
displacement with (Bu3Sn)2CuLi. For related studies:
Marshall, J. A. Chem. Rev. 1996, 96, 31.
25. Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114,
5426.
26. Sharpless, K. B.; Verhoeven, T. R. Aldrichim. Acta 1979,
12, 63.
27. The stereochemistry of the product was assumed based
on previous studies in these laboratories (Refs. 8b, 8c),
and confirmed upon elaboration to 19.
28. Inanaga, J.; Hirata, K.; Saeki, T.; Yamaguchi, M. Bull.
Chem. Soc. Jpn. 1979, 53, 1989.
29. We gratefully acknowledge the assistance of Professor
Crimmins (University of North Carolina, Chapel Hill)
for providing us with details of conditions for deprotec-
tion of 19, NMR spectra of the bis-TBS ether 19 for our
comparisons, and a preprint of the successful total syn-
thesis of 1 recently developed in his laboratories. Crim-
mins, M. T.; Stanton, M. G.; Allwein, S. P. J. Am. Chem.
Soc. 2002, ASAP.
30. We thank Professor Phillip Crews at the University of
California, Santa Cruz for a sample and NMR spectra of
naturally occurring (−)-laulimalide (fijianolide B).
31. Note added in proof: After submission of this work, a
related study has appeared: Wender, P. A.; Hegde, S. G.;
Hubbard, R. D.; Zhang, L. J. Am. Chem. Soc. 2002, 124,
4956.
17. The Grignard reagent was purchased from Aldrich as a
1.0 M solution in ether. Optimal yields were obtained
when the reagent was used from a previously unopened
bottle.
18. Lee, T. V.; Channon, J. A.; Cregg, C.; Porter, J. R.;
Roden, F. S.; Yeoh, H. T. Tetrahedron 1989, 45, 5877.
19. Silyl ether 11 was obtained by silylation of the corre-
sponding allylic alcohol prepared in a series of transfor-
mations from (S)-(−)-malic acid: Masamune, S.; Ma, P.;
Okumoto, H.; Ellingboe, J. W.; Ito, Y. J. Org. Chem.
1984, 15, 2835.
20. Williams, D. R.; Sit, S.-Y. J. Am. Chem. Soc. 1984, 106,
2949.
21. (a) Wipf, P.; Xu, W. Tetrahedron Lett. 1994, 35, 5197; (b)
Wipf, P.; Ribe, S. J. Org. Chem. 1998, 63, 6454.