C O M M U N I C A T I O N S
Table 1. Emission Colors of the Fluorescent Compounds from the
Styryl Dye Library [(a) Components in Building Block A, (b)
Components in Building Block B]a
Table 2. Localization Distribution of the Organelle Specific Styryl
Dyes [(#) Nuclear, (*) Nucleolar, (() Mitochondria, (b) Cytosolic,
(×) Endoplasmic Reticular (ER), (9) Vesicular, (2) Granular]a
a Row a is aldehyde only.
a Row a is aldehyde only.
binding in a larger view, some compounds may be DNA, RNA, or
protein-specific binding probes. Further studies will be carried out
on the compounds that bind specifically to these macromolecules
and those compounds that are sensitive to the cellular environment,
to elucidate structural features of the styryl molecules responsible
for their organelle selectivity and optical properties.
Supporting Information Available: All experimental procedures
and chemical and biological data (PDF). This material is available free
References
(1) (a) Fluorescent Chemosensors for Ion and Molecule Recognition; Czarnik,
A. W., Ed.; American Chemical Society: Washington, DC, 1992. (b)
Applied Fluorescence in Chemistry, Biology and Medicine; Rettig, W.,
Strehmel, B., Schrader, S., Seifert, H., Eds.; Springer: New York, 1999.
(c) Slavik, J. Fluorescent Probes in Cellular and Molecular Biology;
CRC: Ann Arbor, 1993.
(2) (a) Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Kluwer
Academic/Plenum Publishers: New York, 1999. (b) Herman, B. Fluo-
rescence Microscopy, 2nd ed.; Springer: New York, 1998.
(3) Haugland, R. Handbook of Fluorescent Probes and Research Chemicals,
8th ed.; Molecular Probes, Inc.: Eugene, OR, 2001. (b) Bereiter-Hahn,
J.; Seipel, K. H.; Voth, M.; Ploem, J. S. Cell Biochem. Funct. 1983, 1,
147-155. (c) Bereiter-Hahn, J. Biochim. Biophys. Acta 1976, 423, 1-14.
(d) Mewes, H. W.; Rafael, J. FEBS Lett. 1981, 131, 7-10.
(4) (a) Chen, L. B. Annu. ReV. Cell Biol. 1988, 4, 155-181. (b) Nicholls, D.;
Ferguson, S. Bioenergetics 2; Academic Press: London, 1992.
(5) (a) Terstappen, L. W.; Shah, V. O.; Conrad, M. P.; Recktenwald, D.;
Loken, M. R. Cytometry 1988, 9, 477-484. (b) Snyder, D. S.; Small, P.
L. J. Immunol. Methods 2001, 257, 35-40.
(6) (a) Schidel, M. S.; Briehn, C. A.; Bau¨erle, P. Angew. Chem., Int. Ed.
2001, 40, 4677-4680. (b) Zhu, Q.; Yoon, H. S.; Parikh, P. B.; Chang, Y.
T.; Yao, S. Q. Tetrahedron Lett. 2002, 43, 5083-5086. (c) Lavastre, O.;
Illitchev, I.; Jegou, G.; Dixneuf, P. H. J. Am. Chem. Soc. 2002, 124, 5278-
5279. (d) Loren, J. C.; Siegel, J. S. Angew. Chem., Int. Ed. 2001, 40,
754-757.
(7) Brown, D. J.; Jacobsen, N. W. J. Chem. Soc. 1965, 3770-3778.
(8) Matusui, M.; Kawamura, S.; Shibata, K.; Muramatsu, H. Bull. Chem. Soc.
Jpn. 1992, 65, 71-74.
Figure 1. Images of representative localizations (bar ) 10 µm): nucleolar
(I19); nuclear (H28); mitochondria (A12); cytosolic (I37); vesicular (H12);
granular (B41); reticular (J37); multilabeled: nucleolar (I19, red), granular
(34, blue), mitochondrial (B24, green).
pounds are positively charged, it is not surprising that 64 out of
119 selected compounds localize specifically to mitochondria.
Again, owing to the diversity of the molecular structure, some
compounds targeted organelles other than mitochondria. This
encrypted interesting structure-localization relationships (SLR),
which can lead to rational design of molecular probes for cellular
components and opened the chance of multicolor labeling using
our toolbox (Table 2).
Combinatorial chemistry has grown to be one of the most
powerful tools in new drugs and materials discovery, and our
combinatorial approach for organelle-targeted fluorescent dyes
further demonstrates its prowess. In addition to organelle-specific
JA027587X
9
J. AM. CHEM. SOC. VOL. 125, NO. 5, 2003 1131