H. Komatsu, T. Araki / Tetrahedron Letters 44 (2003) 2899–2901
2901
up. Second, CaCl2 was added to enhance the conver-
sion by removing H3PO4 as Ca salts from the reaction
solution. Consequently, 10 was converted to 1 by using
0.84 equiv. of guanine 3 in the presence of bacterial
PNPase2,11 in 71% HPLC yield from 8. Based on the
a-isomer content, the conversion yield was 89% from 8.
The desired 1 was the only product observed in the
HPLC assay and was isolated by crystallization directly
from the reaction mixture in pure form. The isolated
yield was 63% from 8. The structure of 1 was confirmed
by spectroscopic methods (1H and 13C NMR, and IR)
and mass spectral analysis.12 They were identical with
the reported data.4
9. Compound 8 (a:b=80:20): mp 146–150°C; [h]2D8=+2.8° (c
1
2.7, CH3OH); H NMR (CD3OD, 400 MHz): l 8.13 (d,
J=8.3 Hz, 1/5 of 2H), 8.08 (d, J=8.3 Hz, 4/5 of 2H),
7.75 (d, J=8.3 Hz, 2H), 7.67 (d, J=8.3 Hz, 2H), 7.47
(dd, J=8.3 and 7.3 Hz, 2H), 7.39 (m, 1H), 6.02 (m,
1/5H), 5.96 (dd, J=5.6 and 4.6 Hz, 4/5H), 5.34 (bd,
J=54.6 Hz, 1/5H), 5.26 (bd, J=55.6 Hz, 4/5H), 4.71 (bd,
J=25.7 Hz, 4/5H), 4.49 (dd, J=13.2, 4.1 Hz, 1H), 4.42
(dd, J=13.2, 4.1 Hz, 1H), 3.00 (m, 2H), 2.54–2.32 (m,
2H), 2.01 (m, 4H), 1.78 (m, 4H), 1.65 (d, J=12.4 Hz,
2H), 1.32 (m, 8H), 1.20 (m, 2H); 13C NMR (CD3OD, 100
MHz): l 167.58 (b), 167.53 (a), 147.42, 141.07 (a), 147.35
(b), 141.13 (b), 141.07 (a), 131.33 (b), 131.21 (a), 130.08
(a), 129.80 (b), 129.38 (a), 129.83 (b), 129.74 (a), 128.24
(a), 128.19 (a), 128.15 (b), 101.59 (b), 101.20 (d, J=4.1
Hz, a), 95.89 (d, J=177.6 Hz, b), 95.22 (d, J=179.5 Hz,
a), 83.72 (d, J=27.3 Hz, a), 83.23 (d, J=24.8 Hz, b),
66.04 (d, J=9.9 Hz, b), 65.36 (d, J=9.1 Hz, a), 51.25,
41.96 (dd, J=20.7, 6.2 Hz, a), 32.84, 26.11, 25.58; 31P
In summary, stereoselective synthesis of 2,3-dideoxy-3-
fluoro-a-
nium salt 9 and potassium salt 10) was achieved and its
enzymatic conversion to 2%,3%-dideoxy-3%-fluoro-b-
D
-ribose 1-phosphate 2 (its cyclohexylammo-
D
-
guanosine 1 is presented. This chemo-enzymatic strat-
egy produced no isomers of 1, thus providing an
alternative synthetic route for the preparation of vari-
ous unnatural nucleosides.
NMR (CD3OD, 162 MHz): l 1.57 (a), 1.42 (b); IR (cm−1
,
KBr): 3424, 2938, 2858, 1709, 1612, 1561, 1451, 1390,
1279, 1084, 980, 935, 748, 699; MS (APCI) m/z 395
(M−H)−.
10. Compound 9 (a:b=87:13): mp 170–171°C (dec.); [h]2D8=
1
+26.1° (c 5.0, H2O); H NMR (D2O, 400 MHz): l 5.64
Acknowledgements
(dd, J=5.6, 5.6 Hz, 1/6H), 5.61 (dd, J=5.7, 5.4 Hz,
5/6H), 5.02 (dd, J=54.6, 6.1 Hz, 1/6H), 4.96 (dd, J=
54.9, 5.1 Hz, 5/6H), 4.30 (ddd, J=27.1, 5.1, 4.4 Hz,
5/6H), 4.06 (ddd, J=24.2, 5.4, 6.1 Hz, 1/6H), 3.5–3.3 (m,
2H), 2.90 (m, 2H), 2.2–2.1 (m, 2H), 1.74 (m, 4H), 1.56
(m, 4H), 1.41 (d, J=11.7 Hz, 2H), 1.10 (m, 8H), 0.95 (m,
2H); 13C NMR (D2O, 100 MHz): l 100.41 (d, J=4.0 Hz,
a), 95.52 (d, J=173.4 Hz, a), 95.31 (d, J=171.4 Hz, b),
85.83 (d, J=23.8 Hz, a), 85.43 (d, J=23.0 Hz, b), 62.30
(d, J=10.7 Hz, b), 62.02 (d, J=10.7 Hz, a), 51.03, 41.5
(dd, J=18, 5.7 Hz, b), 41.13 (dd, J=18.9, 4.9 Hz, a),
31.32, 25.10, 24.61; 31P NMR (D2O, 162 MHz): l 1.63
(b), 1.57 (a); IR (cm−1, KBr): 2936, 2858, 2560, 2209,
1625, 1561, 1453, 1392, 1243, 1066, 980, 933, 844, 732;
MS (APCI) m/z 215 (M−H)−.
We would like to thank the referees of this paper for
helpful comments. We thank Mr. Hironori Kamachi
for the calculation of the heats of formation, Mr.
Ichirou Ikeda, Mr. Junya Fujiwara and Mr. Hideki
Umetani for helpful discussions.
References
1. For a review, see: Zorbach, W. W. Synthesis 1970, 7, 329.
2. (a) Tarr, H. L. A. Can. J. Biochem. Physiol. 1958, 36,
517; (b) Zintchenko, A. I.; Eroshevskaya, L. A.; Barai, V.
N.; Mikhailopulo, I. A. Nucleic Acids Res. Symp. Ser.
1987, 18, 137.
3. (a) Komatsu, H.; Awano, H.; Tanikawa, H.; Itou, K.;
Ikeda, I. Nucleosides Nucleotides Nucleic Acids 2001, 20,
1291; (b) Komatsu, H.; Awano, H. J. Org. Chem. 2002,
67, 5419.
4. Herdewijn, P.; Balzarini, J.; Baba, M.; Pauwels, R.; Van
Aerschot, A.; Janssen, G.; De Clercq, E. J. Med. Chem.
1988, 31, 2040.
5. Abdel-Bary, H. M.; El-Barbary, A. A.; Khodair, A. I.;
Abdel Megied, A. E. S.; Pedersen, E. B.; Nielsen, C. Bull.
Soc. Chim. Fr. 1995, 132, 149.
11. For a preparation of bacterial PNPase, see: (a) Jensen, K.
F.; Nygaard, P. Eur. J. Biochem. 1975, 51, 253; (b)
Krenitsky, T. A.; Koszalka, G. W.; Tuttle, J. V. Biochem-
istry 1981, 20, 3615.
12. Compound 1: mp 253–255°C (dec.); [h]2D3=−32.7° (c
1
0.0585, H2O); H NMR (DMSO-d6, 270 MHz): l 10.6 (s,
1H), 7.92 (s, 1H), 6.44 (s, 2H), 6.15 (dd, J=9.2, 5.7 Hz,
1H), 5.37 (dd, J=53.7, 4.3 Hz, 1H), 5.11 (bs, 1H), 4.15
(ddd, J=27.0, 5.1, 4.6 Hz, 1H), 3.56 (m, 2H), 2.79 (dddd,
J=39.4, 14.6, 9.2, 4.3 Hz, 1H), 2.58 (ddd, J=21.1, 14.6,
5.7 Hz, 1H); 13C NMR (DMSO-d6, 67.5 MHz): l 156.67,
153.70, 151.00, 135.31, 94.94 (d, J=173.8 Hz), 85.17 (d,
J=22.4 Hz), 82.64, 60.98 (d, J=10.6 Hz), 36.87 (d,
J=20.7 Hz); IR (cm−1, KBr): 3440, 3320, 3166, 1691,
1636, 1600, 1402, 1105, 1058, 945, 780; MS (APCI) m/z
270 (M+H)+.
6. Dean, J. A. Handbook of Organic Chemistry; McGraw-
Hill: New York, 1987.
7. Stewart, J. J. P. QCPE Bull. 1990, 10, 86.
8. Klamt, A.; Schurman, G. J. Chem. Soc., Perkin Trans. 2
1993, 799.