Organic Letters
Letter
(7) Daly, J. W.; McNeal, E.; Gusovsky, F.; Ito, F.; Overman, L. E. J.
Med. Chem. 1988, 31, 477−480.
(15) In this context, hemiaminals are also found as a common
cyclization product. See, for instance: (a) Selvakumar, J.; Ramanathan,
C. R. Org. Biomol. Chem. 2011, 9, 7643−7646. (b) Whyte, A.; Torelli,
A.; Mirabi, B.; Lautens, M. Org. Lett. 2019, 21, 8373−8377. (c) Kise,
N.; Isemoto, S.; Sakurai, T. J. Org. Chem. 2011, 76, 9856−9860.
(d) Lee, J.; Ha, J. D.; Cha, J. K. J. Am. Chem. Soc. 1997, 119, 8127−
8128. (e) Hoye, T. R.; Dvornikovs, V.; Sizova, E. Org. Lett. 2006, 8,
5191−5194. (f) Ha, D.-C.; Yun, C.-S.; Lee, Y. J. Org. Chem. 2000, 65,
621−623. (g) Selvakumar, J.; Rao, R. S.; Srinivasapriyan, V.;
Marutheeswaran, S.; Ramanathan, C. R. Eur. J. Org. Chem. 2015,
2015, 2175−2188.
(16) For examples of alternative aza-Robinson annulation strategies,
see: (a) Fang, F. G.; Prato, M.; Kim, G.; Danishefsky, S. J. Tetrahedron
Lett. 1989, 30, 3625−3628. (b) Kim, G.; Chu-Moyer, M. Y.;
Danishefsky, S. J.; Schulte, G. K. J. Am. Chem. Soc. 1993, 115, 30−39.
(c) Huang, P.-Q.; Fan, T. Eur. J. Org. Chem. 2017, 2017, 6369−6374.
(17) See, for instance: (a) Raiman, M. V.; Pukin, A. V.; Tyvorskii, V.
I.; Kimpe, N. D.; Kulinkovich, O. G. Tetrahedron 2003, 59, 5265−
5272. (b) Mordhorst, T.; Bickmeyer, U. Tetrahedron Lett. 2015, 56,
4363−4366. (c) Rasapalli, S.; Kumbam, V.; Dhawane, A. N.; Golen, J.
A.; Lovely, C. J.; Rheingold, A. L. Org. Biomol. Chem. 2013, 11, 4133−
4137. (d) Wei, Y.; Lin, S.; Liang, F.; Zhang, J. Org. Lett. 2013, 15,
(8) See, for instance: (a) Katavic, P. L.; Venables, D. A.; Rali, T.;
Carroll, A. R. J. Nat. Prod. 2007, 70, 872−875. (b) Molyneux, R. J.;
Tropea, J. E.; Elbein, A. D. J. Nat. Prod. 1990, 53, 609−614. (c) Hu,
Y.; Zhang, C.; Zhao, X.; Wang, Y.; Feng, D.; Zhang, M.; Xie, H. J. Nat.
Prod. 2016, 79, 252−256. (d) Jin, Z. Nat. Prod. Rep. 2013, 30, 849−
868.
(9) See, for instance: Cook, D.; Beaulieu, W. T.; Mott, I. W.; Riet-
Correa, F.; Gardner, D. R.; Grum, D.; Pfister, J. A.; Clay, K.;
Marcolongo-Pereira, C. J. Agric. Food Chem. 2013, 61, 3797−3803.
(10) See, for instance: (a) Jones, T. H.; Voegtle, H. L.; Miras, H. M.;
Weatherford, R. G.; Spande, T. F.; Garraffo, H. M.; Daly, J. W.;
Davidson, D. W.; Snelling, R. R. J. Nat. Prod. 2007, 70, 160−168.
(b) Jones, T. H.; Laddago, A.; Don, A. W.; Blum, M. S. J. Nat. Prod.
1990, 53, 375−381.
(11) See, for instance: (a) Daly, J. W.; Myers, C. W.; Whittaker, N.
Toxicon 1987, 25, 1023−1095. (b) Daly, J. W. J. Nat. Prod. 1998, 61,
162−172. (c) Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod.
2005, 68, 1556−1575. (d) Saporito, R. A.; Donnelly, M. A.; Norton,
R. A.; Garraffo, H. M.; Spande, T. F.; Daly, J. W. Proc. Natl. Acad. Sci.
U. S. A. 2007, 104, 8885−8890.
́
852−855. (e) Baumann, D.; Bennis, K.; Ripoche, I.; Thery, V.; Troin,
(12) For a selection of examples of previous synthesis of indolizidine
and quinolizidine alkaloids, see: (a) Chen, Y.; He, Y.-M.; Zhang, S.;
Miao, T.; Fan, Q.-H. Angew. Chem., Int. Ed. 2019, 58, 3809−3813.
Y. Eur. J. Org. Chem. 2008, 2008, 5289−5300.
(18) For an interesting discussion in a similar context, see: Wysocka,
W.; Przybył, A. Monatsh. Chem. 2001, 132, 973−984.
(19) (a) Chiurato, M.; Routier, S.; Troin, Y.; Guillaumet, G. Eur. J.
Org. Chem. 2009, 2009, 3011−3021. (b) Chiurato, M.; Boulahjar, R.;
Routier, S.; Troin, Y.; Guillaumet, G. Tetrahedron 2010, 66, 4647−
4653.
̈
(b) Jurberg, I. D.; Peng, B.; Wostefeld, E.; Wasserloos, M.; Maulide,
N. Angew. Chem., Int. Ed. 2012, 51, 1950−1953. (c) Tan, Y.; Chen,
Y.-J.; Lin, H.; Luan, H.-L.; Sun, X.-W.; Yang, X.-D.; Lin, G.-Q. Chem.
Commun. 2014, 50, 15913−15915. (d) Burtoloso, A. C. B.; Dias, R.
M. P.; Bernardim, B. Acc. Chem. Res. 2015, 48, 921−934. (e) Gade, A.
B.; Patil, N. T. Org. Lett. 2016, 18, 1844−1847. (f) Pronin, S. V.;
Tabor, M. G.; Jansen, D. J.; Shenvi, R. A. J. Am. Chem. Soc. 2012, 134,
2012−2015. (g) Airiau, E.; Spangenberg, T.; Girard, N.; Breit, B.;
Mann, A. Org. Lett. 2010, 12, 528−531. (h) Davies, S. G.; Fletcher, A.
M.; Foster, E. M.; Houlsby, I. T. T.; Roberts, P. M.; Schofield, T. M.;
Thomson, J. E. Org. Biomol. Chem. 2014, 12, 9223−9235.
(20) Trummal, A.; Lipping, L.; Kaljurand, I.; Koppel, I. A.; Leito, I. J.
Phys. Chem. A 2016, 120, 3663−3669.
(21) For examples of alternative reduction strategies, see:
́
́
(a) Belanger, G.; Larouche-Gauthier, R.; Menard, F.; Nantel, M.;
́
Barabe, F. J. Org. Chem. 2006, 71, 704−712. (b) Riley, D. L.; Michael,
J. P.; de Koning, C. B. Beilstein J. Org. Chem. 2016, 12, 2609−2613.
(c) Jiang, X.-P.; Cheng, Y.; Shi, G.-F.; Kang, Z.-M. J. Org. Chem. 2007,
72, 2212−2215. (d) Michael, J. P.; Gravestock, D. Pure Appl. Chem.
1997, 69, 583−588.
(13) For a selection of examples of methods aimed at the
preparation of fused bicyclic amines or suitable precursors, see:
(a) Krishna, Y.; Shilpa, K.; Tanaka, F. Org. Lett. 2019, 21, 8444−8448.
(b) Maity, A. K.; Roy, S. Adv. Synth. Catal. 2014, 356, 2627−2642.
(c) Holstein, P. M.; Dailler, D.; Vantourout, J.; Shaya, J.; Millet, A.;
Baudoin, O. Angew. Chem., Int. Ed. 2016, 55, 2805−2809. (d) Yu, H.;
Zhang, G.; Huang, H. Angew. Chem., Int. Ed. 2015, 54, 10912−10916.
(e) Tsai, J.-C.; Lin, Y.-H.; Chen, G.-T.; Gao, Y.-K.; Tseng, Y.-C.; Kao,
C.-L.; Chiou, W.-H. Chem. - Asian J. 2018, 13, 3190−3197. (f) Ma, S.;
Ni, B. Chem. - Eur. J. 2004, 10, 3286−3300. (g) Suga, H.; Hashimoto,
Y.; Yasumura, S.; Takezawa, R.; Itoh, K.; Kakehi, A. J. Org. Chem.
2013, 78, 10840−10852. (h) Park, Y.; Schindler, C. S.; Jacobsen, E.
N. J. Am. Chem. Soc. 2016, 138, 14848−14851. (i) Trost, B. M.;
Pedregal, C. J. Am. Chem. Soc. 1992, 114, 7292−7294. (j) Ahari, M.;
Perez, A.; Menant, C.; Vasse, J.-L.; Szymoniak, J. Org. Lett. 2008, 10,
2473−2476. (k) Kalaitzakis, D.; Triantafyllakis, M.; Sofiadis, M.;
Noutsias, D.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2016, 55,
4605−4609. (l) Santiago, J. V.; Burtoloso, A. C. B. Eur. J. Org. Chem.
2018, 2018, 2822−2830.
(22) Boulahjar, R.; Ouach, A.; Matteo, C.; Bourg, S.; Ravache, M.;
́
Guevel, R. l.; Marionneau, S.; Oullier, T.; Lozach, O.; Meijer, L.;
Guguen-Guillouzo, C.; Lazar, S.; Akssira, M.; Troin, Y.; Guillaumet,
G.; Routier, S. J. Med. Chem. 2012, 55, 9589−9606.
(14) (a) Flitsch, W.; Pandl, K. Liebigs Ann. Chem. 1987, 1987, 649−
654. For a similar strategy based on an HWE olefination, see:
(b) Gourves, J.-P.; Couthon, H.; Sturtz, G. Eur. J. Org. Chem. 1999,
1999, 3489−3493. For a similar strategy based on a Julia olefination,
see: (c) Trinh, H. V.; Perrin, L.; Goekjian, P. G.; Gueyrard, D. Eur. J.
́
Org. Chem. 2016, 2016, 2944−2953. (d) Janjic, M.; Prebil, R.;
̌
̌
̌
̌
̌
Groselj, U.; Kralj, D.; Malavasic, C.; Golobic, A.; Stare, K.; Dahmann,
G.; Stanovnik, B.; Svete, J. Helv. Chim. Acta 2011, 94, 1703−1717.
(e) Shi, S.; Lalancette, R.; Szostak, R.; Szostak, M. Chem. - Eur. J.
2016, 22, 11949−11953. (f) Shi, S.; Lalancette, R.; Szostak, M.
Synthesis 2016, 48, 1825−1854. (g) Shi, S.; Szostak, M. Org. Lett.
2015, 17, 5144−5147. (h) Kurtz, K. C. M.; Hsung, R. P.; Zhang, Y.
Org. Lett. 2006, 8, 231−234.
E
Org. Lett. XXXX, XXX, XXX−XXX