5656
K. Vercruysse-Moreira et al. / Tetrahedron 58 ꢀ2002) 5651±5658
4.3.3. N,N0-Dibenzylidene-4,40-ethylenedianiline ꢀc).
Yellow solid :3.53 g, 91%). Mp 167±1698C.25 1H NMR
:CDCl3): d8.48 :s, 2H, CHvN), 7.93±7.48 :m, 10H,
CHPh), 7.22±7.18 :m, 8H, CHC6H4), 2.96 :s, 4H, CH2). 13C
NMR :CDCl3): d159.88 :s, CHvN), 149.96 :s, Cq±N),
139.63 :s, Cq±CH), 136.36 :s, Cq±CH2), 131.33 :s, CHPh),
129.34 :s, CHPh), 128.82 :s, CHPh), 120.97 :s, CHPh), 37.57
:CH2). IR :KBr, cm21): n1619.9 :CvN), 1567.3 :CvC).
MS :DCI/NH3): m/z 389 :M11)1.
4.5.2. Octyl-1,8-bis-[ꢀa-aminobenzyl)spirophosphorane]
2
ꢀ2b). 31P NMR :CDCl3): d231.4 :d, JPH24.7 Hz,
2
1
90%), 232.9 :d, JPH21.2 Hz, 10%). H NMR :CDCl3):
2
d7.35 :m, 10H, CHPh), 4.48 and 4.36 :2d, JHP24.2 Hz,
2
12% and JHP24.9 Hz, 88%, 2H, CH±P), 2.43±2.31 :m,
4H, CH2±N), 1.46 :m, 12H, CH3 endo), 1.41±1.10 :m, 12H,
CH2), 1.05 :m, 12H, CH3 exo). 13C NMR :CDCl3): d172.50
2
2
:d, JCP7.1 Hz, CvO), 135.24 :d, JCP2.6 Hz, Cipso),
2
129.30±127.93 :m, CHPh), 80.95 :d, JCP6.2 Hz,
1
Cq:Me)2), 67.42 :d, JCP190.9 Hz, CH±P), 47.57 :d,
3JCP24.3 Hz, CH2±N), 29.89±26.95 :m, CH2), 26.34 :s,
4.4. Diimine ꢀd) derived from dialdehyde D
3
CH3), 23.47 :d, JCP8.1 Hz, CH3).
The same protocol that for the diimines :a±c) was followed,
using dialdehyde D :1.38 g, 4 mmol) and decylamine
:1.26 g, 8 mmol) in dry chloroform :12 mL).
4.5.3. Bibenzyl-4,40-bis-[ꢀa-aminobenzyl)spirophosphor-
2
ane] ꢀ2c). 31P NMR :CDCl3): d231.6 :d, JPH15.7 Hz,
2
1
75%), 234.5 :d, JPH22.3 Hz, 25%). H NMR :CDCl3):
d7.53±7.39 :m, 10H, CHPh), 6.90±6.61 :m, 8H, CHC6H4),
4.4.1. 1,4-Benzyloxy-bis-N-ꢀ4-benzylidene)-bis-ꢀdecyl-
imine) ꢀd). White solid :1.90 g, 72%). Mp 107±1098C. H
2
2
1
5.40 and 5.36 :2d, JHP22.7 Hz, 25% and JHP16.1 Hz,
75%, 2H, CH±P), 2.66 :s, 4H, CH2), 1.48 :s, 12H, CH3 endo),
0.85 :s, 12H, CH3 exo). 13C NMR :CDCl3): d172.48 :d,
NMR :CDCl3): d8.19 :s, 2H, CHvN), 7.69±7.64 :m, 4H,
0
0
HAA ), 7.45 :s, 4H, HC), 7.01±6.97 :m, 4H, HXX ), 5.11 :s,
2
2JCP5.9 Hz, CvO, main product), 171.75 :d, JCP
3
4H, CH2±O), 3.57 :t, JHH7.0 Hz, 4H, CH2±Nv), 1.67
3
3
7.0 Hz, CvO, minor product), 143.68 :d, JCP10.5 Hz,
:m, 4H, CH2±C±N), 1.26 :m, 28H, CH2), 0.88 :t, JHH
3
6.7 Hz, 6H, CH3). 13C NMR :CDCl3): d160.54 :s, C5),
160.00 :s, CHvN), 136.57 :s, C7), 129.68 :s, C2), 129.60
:s, C3), 127.78 :s, C8), 114.89 :s, C4), 69.74 :s, CH2±O),
61.83 :s, CH2±Nv), 31.97±22.76 :m, CH2), 14.21 :s, CH3).
IR :KBr, cm21): n1646.8 :CvN), 1607.2 :CvC). MS
:DCI/NH3): m/z 625 :M11)1, 483 :M2C10H2111)1.
Cq±N, minor product), 143.26 :d, JCP10.8 Hz, Cq±N,
main product), 134.28±133.04 :m, Cq arom), 129.82±
2
114.71 :m, CHarom), 81.48 :d, JCP6.6 Hz, Cq:Me)2,
2
minor product), 81.27 :d, JCP6.5 Hz, Cq:Me)2, main
1
product), 64.91 :d, JCP175.8 Hz, CH±P, minor product),
1
63.71 :d, JCP178.8 Hz, CH±P, main product), 37.18 :s,
CH2), 27.22±23.11 :m, CH3).
4.5. General procedure for the synthesis of alkyl-bis-
[a-aminospirophosphoranes] ꢀ2a±d)
4.5.4. 1,4-Benzyloxy-bis-[ꢀ4-benzyl-a-aminodecyl)spiro-
phosphorane] ꢀ2d). 31P NMR :CDCl3): d231.1 :d,
2
2JPH24.6 Hz, 95%), 232.5 :d, JPH20.3 Hz, 5%). 1H
Diimine a±d :5 mmol) in dry CH2Cl2 :15 mL) was added
dropwise to a stirred solution of spirophosphorane 1 :2.36 g,
10 mmol) in anhydrous CH2Cl2 :15 mL) at room tempera-
ture under argon. The progress of the reaction was followed
by 31P NMR analysis. The addition reaction occured
instantaneously and afforded alkyl-bis-[a-aminospiro-
phosphoranes] 2a±d in quantitative yields. In spite of
their stability in solution under argon during several days,
all attempts to their puri®cation failed due to their decom-
position into tetracoordinated phosphorus compounds. In
order to characterize these alkyl-bis-[a-aminospirophos-
phoranes], the addition reaction was then carried out
directly in a NMR tube :5 mm diameter) in deuterated
solvent under argon, using diimine a±d :0.2 mmol) in
NMR :CDCl3): d7.39 :s, 4H, HC), 7.31±7.25 :m, 4H,
0
HAA ), 6.98±6.93 :m, 4H, HXX ), 5.04 :s, 4H, CH2±O),
0
2
2
4.50 and 4.32 :2d, JHP20.7 Hz, 8% and JHP24.1 Hz,
92%, 2H, CH±P), 2.39 :m, 4H, CH2±N), 1.46 :s, 12H,
CH3 endo), 1.20 :m, 32H, CH2), 1.09 :s, 12H, CH3 exo), 0.85
3
:t, JHH5.1 Hz, CH3). 13C NMR :CDCl3): d172.61 :d,
2JCP6.9 Hz, CvO), 159.03 :s, C5), 136.48 :s, C7),
3
129.95 :d, JCP8.9 Hz, C3), 127.39 :s, C8), 127.34 :s,
2
C2), 115.62 :s, C4), 80.98 :d, JCP6.2 Hz, Cq:Me)2),
1
69.67 :s, C6), 66.75 :d, JCP192.1 Hz, CH±P), 47.55 :d,
3JCP23.8 Hz, CH2±N), 31.91±22.71 :m, CH2), 26.39 :s,
3
CH3), 23.58 :d, JCP7.9 Hz, CH3), 14.19 :s, CH3).
CDCl3 :0.5 mL) and spirophosphorane
1 :94.4 mg,
4.6. General procedure for the synthesis of alkyl-bis-
[carboxyisobutylꢀa-aminoalkyl) phosphonic acid mono-
esters] ꢀ3a±d)
0.4 mmol) in CDCl3 :0.5 mL) at room temperature. The
PV±C-bond bis-spirophosphoranes 2a±d were instan-
taneously and quantitatively formed, then characterized by
1
31P, H and 13C NMR analysis.
Diimine a±d :5 mmol) in anhydrous CH2Cl2 :15 mL) was
added dropwise to a solution of spirophosphorane 1 :2.36 g,
10 mmol) in anhydrous CH2Cl2 :15 mL) under argon at
room temperature. The mixture was stirred for 5±10 min
at room temperature and then concentrated to dryness.
Concerning the compounds 3a,b and 3d, the residue was
treated by CH3CN/H2O 1:1 :50 mL) at room temperature.
The hydrolysis occurred instantaneously and the bolaform
surfactant precipitated. For 3c, the hydrolysis required
longer time :10 h at room temperature) and the use of acetic
acid instead of CH3CN. In all cases, the precipitates were
collected by ®ltration, washed several times with CH3CN,
4.5.1. Hexyl-1,6-bis-[ꢀa-aminobenzyl)spirophosphorane]
ꢀ2a). 31P NMR :CDCl3): d231.5 :d, 2JPH24.7 Hz, 90%),
232.9 :d, 2JPH18.5 Hz, 10%). 1H NMR :CDCl3): d7.26
2
:m, 10H, CHPh), 4.55 and 4.36 :2d, JHP21.4 Hz, 8% and
2JHH24.7 Hz, 9%, 2H, CH±P), 2.30 :m, 4H, CH2±N),
1.44±1.18 :m, 20H, CH2 and CH3 endo), 0.96 :s, 12H,
2
CH3 exo). 13C NMR :CDCl3): d172.28 :d, JCP7.2 Hz,
CvO), 135.15 :s, Cipso), 129.20±128.51 :m, CHPh), 80.82
2
1
:d, JCP5.7 Hz Cq:Me)2), 67.26 :d, JCP191.4 Hz,
3
CH±P), 47.32 :d, JCP24.7 Hz, CH2±N), 29.68 :s, CH2),
26.60 :s, CH2), 26.25 :s, CH3), 23.31 :d, 3JCP8.1 Hz, CH3).