ChemComm
Communication
Table 3 Chain running isomerizationa
In conclusion, we have shown that an air- and moisture
stable, easily prepared 2,9-dimethylphenanthroline palladium
catalyst 3 in combination with NaBAr4 as promoter in chloroform
or dichloromethane converts alkenes to the most stable double
bond isomer at room temperature or below. Silyl enol ethers
are readily formed from silylated allylic alcohols. Long-distance
double bond chain-running can afford enol silanes as well.
Fluorinated substituents are compatible with the reaction
conditions, allowing the synthesis of protected fluoroenolates.
Catalyst loadings as low as 0.05% can be employed in gram
scale reactions and turnover numbers as high as ca. 1520 were
demonstrated.
Entry
1b
Alkene
Product
Yield, %
66 (2.0/1 E/Z)
64 (3.3 : 1 E/Z)
2
3c,d,e
4c
80 (1.3 : 1 E/Z)
We are grateful to the Welch Foundation (Chair E-0044 to O. D.,
Grant E-1893 to M. B.) and NIGMS (Grant No. R01GM077635 to
O. D.) for supporting this work.
80
5b,d
56 (450 : 1)
6c,d,f
76 (2.6 : 1 E/Z)
Conflicts of interest
a
Reaction conditions: alkene (0.2 mmol), catalyst (0.002 mmol),
NaB[C6H3(CF3)2]4 (0.008 mmol), CDCl3 (0.1 mL), 0 1C, 3 h. Yields in
entries 1, 2, 4, and 5 were determined by 1H NMR with an internal
standard. Yields in entries 3 and 6 are isolated yields of pure product.
There are no conflicts to declare.
b
c
d
Please see ESI for details. Time: 48 h. Time: 24 h. Room temperature. Notes and references
e
f
Scale: 2.0 mmol. Alkene (4.6 mmol), catalyst (0.0023 mmol),
1 (a) P. W. N. M. van Leeuwen, Homogeneous Catalysis, Kluwer
Academic Publishers, 2004, pp. 125–138; (b) J. Prunet, Angew. Chem.,
Int. Ed., 2003, 42, 2826.
NaB[C6H3(CF3)2]4 (0.01 mmol), CH2Cl2 (0.115 mL).
2 (a) S. J. Connon and S. Blechert, Angew. Chem., Int. Ed., 2003,
42, 1900; (b) D. A. Colby, A. S. Tsai, R. G. Bergman and J. A.
Ellman, Acc. Chem. Res., 2012, 45, 814; (c) H. H. Brintzinger,
D. Fischer, R. Mu
Chem., Int. Ed., 1995, 34, 1143; (d) R. I. McDonald, G. Liu and
S. S. Stahl, Chem. Rev., 2011, 111, 2981.
The chain-running isomerization procedure can be used to
synthesize fluorinated silyl enol ethers that are valuable synthetic
precursors but are difficult to access (Scheme 2).11 Isomerization of
alkenyl fluoride 4 resulted in formation of 5 in 78% yield. A silane
activator was necessary in this case, presumably due to weak
coordination of the fluorine-substituted olefin to palladium.4f,7
Furthermore, isomerization of 6 to 7 produces a fluoromethyl-
substituted enol ether in moderate isolated yield.
The reaction likely commences with halide abstraction from
dimethylphenanthroline-palladium methyl chloride complex.
The formed cationic palladium species coordinates alkene
substrate. Migratory insertion followed by b-hydride elimination
gives the active cationic palladium hydride complex, which after
coordination of substrate and a series of migratory insertion/
b-hydride elimination steps releases the product.
¨lhaupt, B. Rieger and R. M. Waymouth, Angew.
´
3 (a) S. W. M. Crossley, F. Barabe and R. A. Shenvi, J. Am. Chem. Soc.,
¨
2014, 136, 16788; (b) F. Weber, A. Schmidt, P. Rose, M. Fischer,
O. Burghaus and G. Hilt, Org. Lett., 2015, 17, 2952; (c) A. Wille,
S. Tomm and H. Frauenrath, Synthesis, 1998, 305; (d) L.-G. Zhuo,
Z.-K. Yao and Z.-X. Yu, Org. Lett., 2013, 15, 4634; (e) G. Erdogan and
D. B. Grotjahn, J. Am. Chem. Soc., 2009, 131, 10354; ( f ) G. Erdogan
and D. B. Grotjahn, Org. Lett., 2014, 16, 2818; (g) A. Scarso,
M. Colladon, P. Sgarbossa, C. Santo, R. A. Michelin and G. Strukul,
Organometallics, 2010, 29, 1487; (h) P. J. Perez, J. C. Calabrese and
E. E. Bunel, Organometallics, 2001, 20, 337; (i) D. Gauthier,
A. T. Lindhardt, E. P. K. Olsen, J. Overgaard and T. Skrydstrup, J. Am.
Chem. Soc., 2010, 132, 7998; ( j) P. Mamone, M. F. Gru¨nberg,
A. Fromm, B. A. Khan and L. Gooben, J. Org. Lett., 2012, 14, 3716;
(k) C. Su and P. G. Williard, Org. Lett., 2010, 12, 5378; (l) M. S. Winston,
P. F. Oblad, J. A. Labinger and J. E. Bercaw, Angew. Chem., Int. Ed., 2012,
51, 9822; (m) K. Curran, W. Risse, M. Hamill, P. Saunders, J. Muldoon,
R. A. de la Rosa and I. Tritto, Organometallics, 2012, 31, 882.
4 (a) C. Chen., T. R. Dugan, W. W. Brennessel, D. J. Weix and P. L.
Holland, J. Am. Chem. Soc., 2014, 136, 945; (b) Y. Wang, C. Qin, X. Jia,
X. Leng and Z. Huang, Angew. Chem., Int. Ed., 2017, 56, 1614;
(c) C. R. Larsen, G. Erdogan and D. B. Grotjahn, J. Am. Chem. Soc.,
2014, 136, 1226; (d) T. Kobayashi, H. Yorimitsu and K. Oshima,
¨
Chem. Asian. J., 2009, 4, 1078; (e) A. Schmidt, A. R. Nodling and
G. Hilt, Angew. Chem., Int. Ed., 2015, 54, 801; ( f ) A. L. Kocen,
K. Klimovica, M. Brookhart and O. Daugulis, Organometallics,
¨
2017, 36, 787; (g) S. Y. Y. Yip and C. Aıssa, Angew. Chem., Int. Ed.,
2015, 54, 6870; (h) C. Larsen and D. B. Grotjahn, J. Am. Chem. Soc.,
2012, 134, 10357; (i) H. J. Lim, C. R. Smith and T. V. RajanBabu,
J. Org. Chem., 2009, 74, 4565; ( j) M. Mayer, A. Welther and A. J. von
Wangelin, ChemCatChem, 2011, 3, 1567; (k) T. Ohmura, Y. Shirai,
Y. Yamamoto and N. Miyaura, Chem. Commun., 1998, 1337.
5 (a) J.-H. Francisco, T. Moragas, J. Cornella and R. Martin, Nature,
2017, 545, 84; (b) R. A. Widenhoefer and N. S. Perch, Org. Lett., 1999,
1, 1103; (c) C. Zhang, C. B. Santiago, L. Kou and M. S. Sigman, J. Am.
Chem. Soc., 2015, 137, 7290; (d) T. Kochi, T. Hamasaki, Y. Aoyama,
J. Kawasaki and F. Kakiuchi, J. Am. Chem. Soc., 2012, 134, 16544;
Scheme 2 Synthesis of fluorinated enol ethers.
This journal is ©The Royal Society of Chemistry 2017
Chem. Commun.