S. M. Worden et al. / Tetrahedron Letters 43 (2002) 6011–6014
6013
We first tried to access 18 from the amide 15 via a
1,5-CH insertion reaction, and although 15 proved
relatively easy to prepare, we were unable to effect the
BCDE-tetracyclic core structure 19 in 62% yield. In
addition, we have shown that a related tertiary amine-
derived Heck reaction precursor 4 leads to the forma-
tion of the BCDE-tetracyclic core as a mixture of
regioisomers (3 and 10) in only modest yield. During
this reaction the enamine 11 was formed as the major
reaction product via an interesting palladium-catalysed
pathway. From this initial proof of concept study, we
can see that our proposed route to (−)-cephalotaxine 1
should be feasible from an amide-derived substrate
similar to 18, although some optimisation of its synthe-
sis will be necessary. These and further studies in this
area will be published in due course.
desired KHMDS-mediated cyclisation reaction.13
A
successful synthesis of 18 was however completed from
7 via the three-step sequence shown in Scheme 4.
Firstly, KHMDS induced 1,5-CH insertion of 7 pro-
duced the spirocycle 16 (>93% e.e.) and deprotection of
the Boc group afforded the corresponding secondary
amine product 17. Purification of this material proved
difficult and it was used in crude form in subsequent
reactions. Finally, the synthesis of 18 was completed,
albeit in modest overall yield, using standard amide
forming conditions.14 Pleasingly, cyclisation of 18 medi-
ated by 10 mol% of the catalyst 9 afforded the desired
tetracyclic amides 19 and 20 as the major products of
the reaction as a 3:1 mixture in 54% yield. The isolated
yield of tetracyclic product could be increased to 62% if
Pd(PtBu3)2 was used as catalyst in the presence of
MeNCy2, but in this case only the endocyclic olefin
isomer 19 was observed.
Acknowledgements
The authors thank Dr. Geo Adam for his interest in
this work and Roche Products (Welwyn), F. Hoff-
mann-LaRoche AG (Basel), the EPSRC (studentship
for S.W.), the University of Botswana (studentship for
R.M.) and the School of Chemistry, University of
Nottingham, for financial support.
In summary, we have shown that the tetracyclic core of
the cephalotaxus alkaloids can be accessed from proline
using an alkylidene carbene 1,5-CH insertion to con-
struct the DE spirocyclic ring system. We have also
shown that a Heck-type cyclisation of an amide-derived
precursor 18 leads to the formation of the desired
References
1. (a) Wall, M. E. J. Am. Pharm. Assoc. 1954, 43, 505; (b)
Paudler, W. W.; Kerley, G. I.; McKay, J. J. Org. Chem.
1963, 28, 2194; (c) Powell, R. G.; Weisleder, D.; Smith,
C. R., Jr.; Wolff, I. A. Tetrahedron Lett. 1969, 9, 4081;
(d) Abraham, D. J.; Rosenstein, R. D.; McGandy, E. L.
Tetrahedron Lett. 1969, 9, 4081; (e) Paudler, W. W.;
McKay, J. J. Org. Chem. 1973, 38, 2110.
N
a, b
N
Br
O
Boc
Br
Br
7
15
2. Powell, R. G.; Weisleder, D.; Smith, C. R., Jr.; Rohwed-
der, W. K. Tetrahedron Lett. 1970, 10, 815.
c
c
3. O’Brien, S.; Kantarjian, H.; Koller, C.; Feldman, E.;
Beran, M.; Andreeff, M.; Giralt, S.; Cheson, B.; Keating,
M.; Freireich, E.; Rios, M. B.; Talpaz, M. Blood 1999,
93, 4149–4153.
4. (a) Ikeda, M.; El Bialy, S. A. A.; Hirose, K.; Kotake, M.;
Sato, T.; Bayomi, S. M. M.; Shehata, I. A.; Abdelal, A.
M.; Gad, L. M.; Yakura, T. Chem. Pharm. Bull. 1999, 47,
983; (b) Koseki, Y.; Sato, H.; Watanabe, Y.; Nagasaka,
T. Org. Lett. 2002, 4, 885; (c) Ikeda, M.; Hirose, K.-I.; El
Bialy, S. A. A.; Sato, T.; Yakura, T.; Bayomi, S. M. M.
Chem. Pharm. Bull. 1998, 46, 1084; (d) For an excellent
review, see: Miah, M. A. J.; Hudlicky, T.; Reed, J. W.
The Alkaloids 1998, 51, 199.
O
e
N
(from 17)
N
Br
R
16, R=Boc
17, R=H
18
d
f or g
O
N
O
N
5. (a) Tietze, L. F.; Schirok, H. J. Am. Chem. Soc. 1999,
121, 10264; (b) Nagasaka, T.; Sato, H.; Saeki, S.-I.
Tetrahedron: Asymmetry 1997, 8, 191; (c) Isono, N.;
Mori, M. J. Org. Chem. 1995, 60, 115.
+
H
H
19
20
6. (a) Gabaitsekgosi, R.; Hayes, C. J. Tetrahedron Lett.
1999, 40, 7713; (b) Green, M. P.; Prodger, J. C.; Sher-
lock, A. E.; Hayes, C. J. Org. Lett. 2001, 3, 3377.
7. (a) Taber, D. F.; Christos, T. E.; Neubert, T. D.; Batra,
D. J. Org. Chem. 1999, 64, 9673; (b) Taber, D. F.;
Neubert, T. D. J. Org. Chem. 2001, 66, 143; (c) Taber, D.
F.; Meagley, R. P.; Doren, D. J. J. Org. Chem. 1996, 61,
5723.
Scheme 4. Reagents and conditions: (a) MeOH, AcCl, rt; (b)
o-Br-PhCH2CO2H, EDCI, HOBt, NMM, DCM (80%, two
steps); (c) KHMDS, Et2O, rt (60–65%); (d) MeOH, AcCl, rt
or TFA, CH2Cl2; (e) o-Br-PhCH2CO2H, EDCI, HOBt,
NMM, DCM (29%, two steps); (f) MeCN:DMF:H2O (5:5:1),
catalyst 9 (10 mol%), 120°C (41% 19 and 13% 20); (g)
Pd(PtBu3)2, NMeCy2, dioxane, 100°C (62% 19 only).