C O M M U N I C A T I O N S
Scheme 2. Total Synthesis of Cacospongionolide Ba
Moreover, the inhibition is notable for the synthetic precursor
possessing the furan ring in place of the γ-hydroxybutenolide moiety
(+)-13. These results suggest that the γ-hydroxybutenolide is not
the sole structural feature of the natural product inVolVed in sPLA2
inhibition.
In summary, the first total syntheses of (+)- and (-)-cacospon-
gionolide B have been accomplished in 12 linear steps from
commercially available starting materials. The pivotal transforma-
tions include a three-step sequence that couples the two fragments
of the natural product and generates the dihydropyran ring. The
activity of the analogues against bee venom sPLA2 suggests that
cacospongionolide B has an enantiospecific interaction with the
phospholipase that is independent of the γ-hydroxybutenolide
moiety. To identify improved antiinflammatory agents, efforts are
underway to prepare more potent inhibitors of sPLA2 using the
cacospongionolide scaffolding.
a Reagents: (a) Li/NH3, t-BuOH, Et2O, -33 °C; 7, Et2O, -78 °C (70%);
(b) Ph3PdCH2, DMSO, 75 °C (60%); (c) Cy3P(iMes)(Cl)2RudCHPh,
CH2Cl2, rt (91%); (d) [(COD)RhCl]2, (R)-BINAP, H2 (3 atm), CH2Cl2, 30
°C (91%, 3.3:1 dr); (e) 1 N HCl/THF (1:2), rt (90%); (f) Ph3PdCH2, DMSO,
75 °C (84%); (g) O2, Rose bengal, i-Pr2NEt, 150 W tungsten filament lamp,
CH2Cl2, -78 °C (69%).
Acknowledgment. We thank Dr. Salvatore De Rosa for
providing authentic samples of cacospongionolide B. We also thank
Mr. Jarred Blank for assistance with X-ray crystallographic studies.
The NIH (CAR01-66617) is acknowledged for the financial support
of this research.
With most of the side chain in place, the next challenge was
selective reduction of the decalin C8 exo-olefin. Heterogeneous
hydrogenation catalysts (i.e., Pd/C, Rh/C, Ir-black, Pt-black) proved
nonselective under a variety of conditions, reducing both isolated
olefins, as well as the furan ring. Homogeneous hydrogenation
catalysts can be more discriminating, and in that regard, Wilkinson’s
catalyst reduced selectively the desired disubstituted olefin in high
yield, however with only modest diastereoselectivity (1.7:1) favoring
the desired compound.14 Improved results were obtained with a
chiral rhodium catalyst.15 (R)-BINAP/Rh(I) catalyst (20 mol %) in
CH2Cl2 at 30 °C under 3 atm of H2 provided the desired isomer in
91% yield (based on 76% conversion) as a 3.3:1 mixture of
diastereomers.16 The double diastereoselectivity imparted by the
chiral ligand was slight; the (S)-BINAP ligand offered a 3:1
diastereomeric ratio, again favoring the desired stereochemistry.
With all stereocenters of the target molecule in place, completion
of the synthesis required conversion of the protected C4 ketone
into an exo-olefin. Removal of the acetal under acid conditions in
the compound resulting from hydrogenation of 12, followed by a
Wittig olefination generated furan 13 in 76% overall yield for the
two steps. Finally, photooxidation of the furan moiety under basic
conditions17 unmasked the desired γ-hydroxybutenolide functional-
ity in 69% yield and completed the first total synthesis of (+)-
cacospongionolide B. In an analogous fashion, the enantiomer of
the natural product was also prepared using the appropriate
enantiomeric catalysts and reagents.
Supporting Information Available: Experimental procedures and
data on new compounds (PDF). This material is available free of charge
References
(1) (a) De Rosa, S.; Crispino, A.; De Giulio, A.; Iodice, C. J. Nat. Prod.
1995, 58, 1776-1780. (b) Soriente, A.; Crispino, A.; De Rosa, M.; De
Rosa, S.; Scettri, A.; Scognamiglio, G.; Villano, R.; Sodano, G. Eur. J.
Org. Chem. 2000, 947-955.
(2) Garcia Pastor, P.; De Rosa, S.; De Giulio, A.; Paya´, M.; Alcarza, M. J.
Brit. J. Pharm. 1999, 126, 301-311.
(3) Heller, A.; Koch, T.; Schmeck, J.; van Ackern, K. Drugs 1998, 55, 487-
496.
(4) De Silva, E. D.; Scheuer, P. J. Tetrahedron Lett. 1980, 21, 1611-1614.
(5) (a) Potts, B. C. M.; Faulkner, D. J. J. Nat. Prod. 1992, 55, 1701-1717.
(b) Potts, B. C. M.; Faulkner, D. J.; De Carvalho, M. S.; Jacobs, R. S. J.
Am. Chem. Soc. 1992, 114, 5093-5100.
(6) (a) De Rosa, M.; Solladieˆ-Cavallo, A.; Scettri, A Tetrahedron Lett. 2000,
41, 1593-1596. (b) De Rosa, M.; Soriente, A.; Sodano, G.; Scettri, A.
Tetrahedron 2000, 56, 2095-2102. (c) De Rosa, M.; Dell’Aglio, R.;
Soriente, A.; Scettri, A Tetrahedron: Asymmetry 1999, 10, 3659-3662
and references therein.
(7) Reported at the 223rd ACS National Meeting, Orlando, FL, April 7-11,
2002; American Chemical Society: Washington, DC, 2002; ORGN-434.
(8) (a) Smith, A. B., III; Mewshaw, R. J. Org. Chem. 1984, 49, 3485-3489.
(b) Larsen, S. D.; Monti, S. A. J. Am. Chem. Soc. 1977, 99, 8015-8020.
(9) Racherla, U. S.; Liao, Y.; Brown, H. C. J. Org. Chem. 1992, 57, 6614-
6617.
(10) Piscopio, A. D.; Minowa, N.; Chakraborty, T. K.; Koide, K.; Bertinato,
P.; Nicolaou, K. C. J. Chem. Soc., Chem. Commun. 1993, 617-618.
(11) Enone 9 was prepared in >99% ee after recrystallization using a
D-phenylalanine-mediated enantioselective Robinson annulation, followed
by protection of C-4 ketone. (a) Uma, R.; Swaminathan, S.; Rajagopalan,
K. Tetrahedron Lett. 1984, 25, 5825-5828. (b) Hagiwara, H.; Uda, H. J.
Org. Chem. 1988, 53, 2308-2311.
(12) (a) Stork, G.; Rosen, P.; Goldman, N.; Coombs, R. V.; Tsujji, J. J. Am.
Chem. Soc. 1965, 87, 275-286. (b) Stork, G.; Ganem, B. J. Am. Chem.
Soc. 1973, 95, 6152-6153. (c) Boeckman, R. K. J. Am. Chem. Soc. 1973,
95, 6867-6869. (d) Boeckman, R. K. J. Am. Chem. Soc. 1974, 96, 6179-
6181. The minor diastereomer resulting from the enantiomer of 7 was
not detected by 1H NMR (i.e., < 3%).
(13) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-
956.
(14) Harmon, R. E.; Gupta, S. K.; Brown, D. J. Chem. ReV. 1973, 73, 21-52.
(15) Ohta, T.; Ikegami, H.; Miyake, T.; Takaya, H. J. Organomet. Chem. 1995,
502, 169-176.
Figure 2. Inhibition of bee venom sPLA2.
(16) Stereochemistry confirmed through single-crystal X-ray analysis.
(17) (a) Kernan, M. R.; Faulkner, D. J. J. Org. Chem. 1988, 53, 2773-2776.
(b) Demeke, D.; Forsyth, C. J. Org. Lett. 2000, 2, 3177-3179. Synthetic
material was identical to samples provided by Dr. Salvatore De Rosa.
Inhibition of sPLA2 with synthetic variants of cacospongionolide
B revealed several important aspects (Figure 2). The inhibition is
enantioselective; the natural product (+)-1 is a more potent inhibitor
of bee venom sPLA2 than the unnatural enantiomer (-)-1.
JA026899X
9
J. AM. CHEM. SOC. VOL. 124, NO. 39, 2002 11585