A.B. Ryabitskii et al. / Journal of Molecular Structure 1007 (2012) 52–62
61
provided equipment. We are indebted to Dr. Vladimir V. Pir-
ozhenko for valuable discussion of theoretical and experimental
questions of dynamic NMR, Dr. Alexander B. Rozhenko and Dr. Oleg
A. Zhikol for advices in quantum-chemical calculations.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
Fig. 8. The differences of free energy activation DDG–298 (4) as a function of dihedral
(torsion) angle between the planes of the terminal groups of the monomethine
cyanine AAz-0-Het, and linear regression (solid line) calculated by the least-squares
method.
References
[1] A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, G.B. Mishra, Chem. Rev. 100
(2000) 1973.
[2] A.A. Ishchenko, Yu.L. Slominsky, A.I. Tolamchov, J. Org. Pharm. Chem. 7 (2009)
3 (in Ukrainian).
[3] B.I. Shapiro, Spectral sensitization of silver halides in NIR region, in: S. Daehne,
U. Resch-Genger, O.S. Wolfbeis (Eds.), Near-Infrared Dyes for High Technology
Applications, NATO ASI Series, 3. High Technology, vol. 52, Kluwer Academic
Publishers, Dordrecht, Boston, London, 1998.
[4] S.R. Marder, Chem. Commun. (2006) 131.
[5] C. Sun, J. Yang, L. Li, X. Wu, Y. Liu, S. Liu, J. Chromatogr., B 803 (2004) 173;
G. Patonay, J. Salon, J. Sowell, L. Strekowski, Molecules 9 (2004) 40.
[6] B.A. Armitage, Top. Curr. Chem. 253 (2005) 55.
[7] D.G. Norman, R.J. Grainger, D. Uhrín, D.M.J. Lilley, Biochemistry 39 (2000)
6317.
[8] K.M. Sovenyhazy, J.A. Bordelon, J.T. Petty, Nucleic Acid Res. 31 (2003) 2561.
[9] T.Yu. Ogul’chanskya, M.Yu. Losytskyy, V.B. Kovalska, S.S. Lukashov, V.M.
Yashchuk, S.M. Yarmoluk, Spectrochim. Acta, A 57 (2001) 2705.
[10] R.A. Garoff, E.A. Litzinger, R.E. Connor, I. Fishman, B.A. Armitage, Langmuir 18
(2002) 6330.
Fig. 9. The rotation energies of the CAAzACmethine bond for the vinylogs AAz-n-AAz
and AAz-n-OPy (in CDCl3).
[11] S.M. Yarmoluk, S.S. Lukashov, T.Yu. Ogul’chansky, M.Yu. Losytskyy, O.S.
Kornyushyna, Biopolymers 62 (2001) 219.
[12] L.G.S. Brooker, A.L. Sklar, H.W.J. Creesman, G.H. Keyes, L.A. Smith, R.H. Sprague,
E. Van Lare, G. Van Zandt, F.L. White, W.W. Williams, J. Am. Chem. Soc. (1945)
1875.
[13] A.Ya. Ilchenko, Ukr. Khim. Zh. 40 (1976) 160 (in Ukrainian).
[14] G.G. Dyadusha, A.D. Kachkovskii, Ukr. Khim. Zh. 44 (1978) 948 (in Ukrainian).
[15] W. Grahn, Tetrahedron 32 (1976) 1931;
N. Katayama, Yu. Ozaki, Sh. Yasui, K. Iriyama, J. Mol. Struct. 274 (1992) 171.
[16] A.M. Kolesnikov, M.I. Povolotskii, Theor. Exp. Chem. 24 (1988) 220.
[17] E.I. Mayboroda, Yu.L. Slominsky, A.V. Turov, A.I. Tolmachev, Chem. Heterocycl.
Compd. 44 (2008) 78.
energy and receds the energies in the row from the tri- to monom-
ethine (DDG– > 0). Thus, DDG– parameter can be used to draw
certain conclusions on the spatial arrangement of the terminal
groups.
Further lengthening of the polymethine chain in the pentame-
thine cyanines leads to the decrease of the activation energy in
the case of the symmetrical cyanines AAz-n-AAz. Vice versa, in
the case of the unsymmetrical AAz-n-OPy minor increase of the
energy is observed (Fig. 9).
[18] A.M. Kolesnikov, F.A. Mikhailenko, Russ. Chem. Rev. 56 (1987) 275.
[19] P.M. Henrichs, S. Gross, J. Am. Chem. Soc. 98 (1976) 7169.
[20] S. Ghelli, G. Ponterini, J. Mol. Struct. 355 (1995) 193.
4. Conclusions
[21] A.D. Kachkovskii, N.M. Kovalenko, Theor. Exp. Chem. 33 (1997) 192;
A.D. Kachkovskii, O.A. Zhukova, Theor. Exp. Chem. 36 (2000) 150.
[22] J. Bricks, A. Ryabitskii, A. Kachkovskii, Eur. J. Org. Chem. (2009) 3439.
[23] J. Bricks, A. Ryabitskii, A. Kachkovskii, Chem. Eur. J. 16 (29) (2010) 8773.
[24] A.B. Ryabitskii, J.L. Bricks, A.D. Kachkovskii, A.N. Chernega, Y.G. Vlasenko, J.
Mol. Struct. 982 (2010) 79.
A systematic study of the conformational behavior of the
symmetrical and unsymmetrical cyanine dyes bearing a 2-azaazu-
lenium moiety in solution was carried out by means of quantum-
chemical and experimental methods.
[25] F.M. Hamer, in: A. Weissberger (Ed.), The Cyanine Dyes and Related
Compounds in the Chemistry of Heterocyclic Compounds, vol. 18,
Interscience, New York, NY, 1964, pp. 200–243. p. 200–243, 398.
[26] GAUSSIAN03; Revision E.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E.
Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin,
J.C. Burant, M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,
G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida., T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.
Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R.
Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W.
Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J Dannenberg., V.G.
Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D.
Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S.
Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong,
C. Gonzalez, J.A. Pople, Gaussian, Inc., Pittsburgh PA, 2004.
The direct correlation between the barriers to conformational
transformations and such parameters as electron-donating proper-
ties of the terminal groups and the polymethine chain length were
established experimentally. The values of the rotation energies for
the methine bonds are proportional to the difference in the elec-
tron-donating properties of the terminal groups of the unsymmet-
rical cyanines. Spatial hindrances of the bulky terminal groups
reduce the bond rotation energy in monomethine cyanines. The
styryl dyes are characterized by the minor values of the rotation
energies around the corresponding bonds compared to the cya-
nines. The data of the quantum-chemical calculations are in agree-
ment with those obtained experimentally.
It was proved by the calculations using the polarizable contin-
uum model that solvation stabilizes the ground and transition
states of the dyes and appreciably reduces the barrier values. The
solvent polarity has relatively weak influence on the absolute
energy values.
[27] Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120 (2008) 215.
[28] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[29] M.S. Gordon, J.S. Binkley, J.A. Pople, W.J. Pietro, W.J. Hehre, J. Am. Chem. Soc.
104 (1982) 2797.
[30] K.B. Wiberg, Tetrahedron 24 (1968) 1083.
[31] E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M.
Morales, F. Weinhold, NBO 5.0, Theoretical Chemistry Institute, University of
Wisconsin, Madison, WI, 2001.
[32] M.W. Wong, M.J. Frisch, K.B. Wiberg, J. Am. Chem. Soc. 113 (1991) 4776.
[33] V. Barone, M. Cossi, J. Phys. Chem. A 102 (1998) 1995.
[34] H.J. Reich, WINDNMR: NMR Spectrum Calculation Version 7.1.12., Department
Acknowledgments
We are grateful to Dr. Vladimir N. Fetukhin and Spoluka Chem-