unusual characteristics. In this connection, derivatives of the
quinones, whose electronic characteristics can be electro-
chemically or photochemically controlled, have recently been
used to fabricate nanostructures.7
Given the current interest in fabricating novel nano-
mechanical systems, we have designed a new molecular
system, 2,11-dithio[4,4]metametaquinocyclophane 1 contain-
ing a quinone moiety (Figure 1). The lower part of the
the reversible process of conformational characteristics of
the quinocyclophane system can yield a controllable nano-
mechanical device.
In an effort to investigate the possible utility of confor-
mational characteristics, we have studied the interaction
energies between p-benzoquinone and benzene using ab initio
calculations.8 In the neutral state of the benzoquinone-
benzene pair (simulating 1), the stacked conformer is 5 kcal/
mol more stable than the T-shaped one. On the other hand,
in the dianionic state of the p-benzoquinone-benzene pair
(simulating 2), the T-shaped conformer is 6 kcal/mol more
stable than the stacked one, because of (i) the enhanced
charge-charge electrostatic interaction between the posi-
tively charged H atom of the benzene and the negatively
charged quinone dianion moiety in the T-shaped conformer
and (ii) the strong π-H interaction between the large
π-electron density of the dianionic quinone moiety and the
edge H atom of the benzene. These interaction energies are
indeed reflected in the conformational energy study of
cyclophanes 1 and 2. The stacked conformer of 1 is 7 kcal/
mol more stable than the T-shaped one, whereas the T-shaped
conformer of 2 is 9 kcal/mol more stable than the stacked
one, indicating that the conformational energy change caused
by the side linkers between benzene and quinone/hydro-
quinone in the cyclophane system is not large. The predicted
structures of 1 and 2 (Figure 2) are shown in comparison
Figure 1. Schematic view of the conformational change of the
upper benzene ring in the normal state 1, the dianionic state 2, and
the reduced state 3. The reaction between 1 and 2 that is composed
of two single electron redox steps (through 1-•) by electrochemical
process is fast, whereas that between 2 and 3 is very slow.
quinocyclophane 1 has a p-benzoquinone moiety, which is
an electrochemically active species and has large electron
affinity (∼40 kcal/mol) from highly enhanced aromatic
π-conjugation upon accepting two electrons. Thus, 1 can
readily change to the dianionic state 2 as an extremely fast
process involving electron transfer. In the presence of
solvents containing H+ sources, the dianionic species changes
into hydroquinone, and thus 2 can be converted into 2,11-
dithio[4,4]metametahydroquinocyclophane 3, as a slow
process involving proton exchange. All these reactions are
reversible or pseudoreversible.
An interesting point of this system is that the structural
changes of edge-to-face (T-shaped) and face-to-face (stacked)
orientations can be electrochemically controlled, and hence
Figure 2. X-ray crystal structure of 1 (left) and ab initio (MP2/
6-31G*) structures of 1 (middle) and 2 (right).
with the X-ray structure of 1 (to be discussed below). After
a time, in the case of the interaction energy between
p-hydroquinone and benzene (simulating 3), both T-shaped
and stacked conformations are similar in energy. However,
the T-shaped conformation is slightly more favored (by ∼1
kcal/mol) at a more accurate ab initio level.9 Therefore, the
(3) (a) Hunter, C. A. Chem. Soc. ReV. 1994, 101. (b) Adams, H.; Carver,
F. J.; Hunter, C. A.; Morales, J. C.; Seward, E. M. Angew. Chem., Int. Ed.
1996, 35, 1542. (c) Kim, E.; Paliwal, S.; Wilcox, C. S. J. Am. Chem. Soc.
1998, 120, 11192. (d) Ren, T. et al. J. Biomol. Struct. Dyn. 1997, 15, 401.
(e) Hong, B. H.; Lee, J. Y.; Cho, S. J.; Yun, S.; Kim, K. S. J. Org. Chem.
1999, 64, 5661. (f) Tarakeshwar, P. et al. J. Am. Chem. Soc. 2001, 123,
3323. (g) Kim, K. S.; Tarakeshwar, P.; Lee, J. Y. Chem. ReV. 2000, 100,
4145. (h) Hobza et al. J. Am. Chem. Soc. 1994, 116, 3500. (i) Tsuzuki, S.
et al. J. Am. Chem. Soc. 2002, 124, 104. (j) Brutschy, B. Chem. ReV. 2000,
100, 3891.
(4) Schladetzky, K. D.; Haque, T. S.; Gellman, S. H. J. Org. Chem. 1995,
60, 4108.
(8) MP2/6-31+G* calculations for the p-benzoquinone-benzene and the
p-benzoquinone dianion-benzene pairs, and MP2/6-31G* calculations for
the cyclophane systems using the Gaussian 98 suite of programs (Frisch.
M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Zarkzewski, V. G.; Montgomery, J. A., Jr.; Stratmann,
R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K.
N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi,
R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.;
Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.
V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.;
Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.;
Replogle, E. S.; Pople, J. A. Gaussian 98; Gaussian Inc.: Pittsburgh, PA,
1998).
(5) (a) Choi, H. S. et al. J. Org. Chem. 2002, 67, 1848. (b) Oh, K. S. et
al. Org. Lett. 2000, 2, 2679. (c) Choi, H. S.; Kim, K. S. Angew. Chem., Int.
Ed. 1999, 38, 2256; Angew. Chem. 1999, 111, 2400. (d) Choi, H. S.; Suh,
S. B.; Cho, S. J.; Kim, K. S. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 12094.
(6) (a) Dougherty, D. A. Science 1996, 271, 163. (b) Kim, D. H. et al.
Bioorg. Med. Chem. Lett. 1993, 3, 263. (c) Lee, J. Y. Theoretical Studies
on the Electronic Structure of the Benzene Dimer and the Aromatic-
Aromatic Interactions; Application to the Cyclophanes. B.S. Dissertation,
Pohang University of Science and Technology, Pohang, Korea, 1992. (d)
Carbacos, O. M.; Weinheimer, C. J.; Lisy, J. M. J. Chem. Phys. 1999, 110,
8429.
(7) (a) Hong, B. H. et al. J. Am. Chem. Soc. 2001, 123, 10748. (b) Hong,
B. H.; Bae, S. C.; Lee, C.-W.; Jeong, S.; Kim, K. S. Science 2001, 294,
348.
3972
Org. Lett., Vol. 4, No. 22, 2002