4300
Organometallics 2002, 21, 4300-4302
Syn th esis a n d Ch a r a cter iza tion of
(P er flu or oa r yl)bor a n e-F u n ction a lized Ca r bosila n e
Den d r im er s a n d Th eir Use a s Lew is Acid Ca ta lysts for
th e Hyd r osila tion of Acetop h en on e
Roland Roesler, Bryan J . N. Har, and Warren E. Piers*,1
University of Calgary, Department of Chemistry, 2500 University Drive NW,
Calgary, Alberta, Canada T2N 1N4
Received J uly 2, 2002
Summary: Carbosilane dendrimers capped with 4, 8,
and 12 perfluoroarylborane Lewis acids are prepared via
a self-catalyzed silation of the aryl ether 1 with the
appropriate Si-H terminated dendrimer scaffold. The
dendrimers were fully characterized by spectroscopic
methods and MALDI-TOF mass spectrometry and tested
as catalysts for the hydrosilation of acetophenone using
triethylsilane, exhibiting only slightly inferior activities
in comparison to B(C6F5)3.
catalysts are comparable to (or even better than6) those
of the parent mononuclear systems, but “dendritic
effects” which lower activity have been observed in some
systems. These effects include leaching of the active
metal away from the dendrimeric support,7 dimerization
of active sites on the periphery of the dendrimer,8 and
other steric effects resulting from a high local density
of catalyst sites.
While transition-metal-functionalized dendrimers have
received much attention, few if any examples of den-
drimers adorned with main-group Lewis acids have
appeared.9 Our interest in the chemistry of the strong
Dendrimers are aesthetically pleasing macromol-
ecules formed in iterative synthetic protocols which
build branches from a geometrically defined core such
that the final structures are essentially monodisperse.2
In recent years, research on dendrimers has evolved
from form to function in that well-defined dendrimeric
scaffolds can be adorned at the periphery with groups
that serve some chemical purpose: e.g. catalysis,3 light
harvesting,4 or (as in carborane-containing dendrimers)
neutron capture therapy.5 In the catalysis area, the
focus has mainly been on incorporation of transition-
metal-based catalysts, and several examples of the
preparation and behavior of dendritic catalysts with
well-defined mononuclear organometallic analogues has
been achieved. In general, activities of the dendrimeric
10
organometallic Lewis acid B(C6F5)3 as a catalyst for
organic reactions such as hydrosilation11 and allylstan-
nation12 of carbonyl functions, as well as its important
role as a cocatalyst in olefin polymerization by single-
site catalysts,13 led us to prepare dendrimeric versions
of this catalyst to explore their behavior in these areas.
Since B(C6F5)3 is a relatively expensive Lewis acid, the
possibility of implementing removable dendritic versions
of this catalyst is a primary motivation of this work.
In addition to the above-mentioned reactions, B(C6F5)3
is also an efficient catalyst for the silation of aryl methyl
ethers ArOMe to form ArOSiR3 and CH4 in high yields
and with trivial workup procedures.14 This is thus an
ideal reaction for capping the well-known carbosilane
dendrimers with (perfluoroaryl)borane groups, provided
a suitable borane-functionalized ArOMe reagent can be
prepared. The mechanism of this ether silation reaction
involves the activation of the silane by B(C6F5)3 through
partial abstraction of the silane hydride, followed by
nucleophilic attack of the developing silylium ion by the
(1) Phone: 403-220-5746.Fax: 403-289-9488.E-mail: wpiers@ucalgary.ca.
S. Robert Blair Professor of Chemistry 2000-2005. E. W. R. Steacie
Memorial Fellow, 2001-2003.
(2) (a) Buhleier, E. W.; Wehner, W.; Vo¨gtle, F. Synthesis 1978, 155.
(b) Denkewalter, R. G.; Kolc, J .; Lukasavage, W. J .; U.S. Patent
4,289,872, Sept 15, 1981; U.S. Patent 4,360,646, Nov 23, 1982; U.S.
Patent 4,410,688, Oct 18, 1983. (c) Tomalia, D. A.; Baker, H.; Dewald,
J . R.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J .; Ryder, J .; Smith, P.
Polym. J . (Tokyo) 1985, 17, 117. (d) Tomalia, D. A.; Baker, H.; Dewald,
J . R.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J .; Ryder, J .; Smith, P.
Macromolecules 1986, 19, 2466. (e) Newkome, G. R.; Yao, Z.-Q.; Baker,
G. R.; Gupta, K. J . Organomet. Chem. 1985, 50, 2003.
(6) (a) Maravel, V.; Laurent, R.; Caminal, A.-M.; Majoral, J .-P.
Organometallics 2000, 19, 4025. (b) Reetz, M. T.; Lohmer, G.; Schwick-
ardi, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 1526.
(7) (a) Brinkmann, N.; Giebel, D.; Lohmer, G.; Reetz, M. T.; Kragl,
U. J . Catal. 1999, 183, 163. (b) de Groot, D.; Eggeling, E. B.; de Wilde,
J . C.; Kooijman, H.; van Haaren, R. J .; van der Made, A. W.; Spek, A.
L.; Vogt, D.; Reek, J . N. H.; Kamer, P. C. J .; van Leeuwen, P. W. N.
M. Chem. Commun. 1999, 1623.
(8) Miedaner, A.; Curtis, C. J .; Barkley, R. M.; DuBois, D. L. Inorg.
Chem. 1994, 33, 5482.
(9) A scandium-containing dendrimer has been employed as a Lewis
acid catalyst: Reetz, M. T.; Giebel, D. Angew. Chem., Int. Ed. 2000,
39, 2498.
(3) (a) Oosterom, G. E.; Reek, J . N. H.; Kamer, P. C. J .; van Leeuwen,
P. W. N. M. Angew. Chem., Int. Ed. 2001, 40, 1829. (b) Astruc, D.;
Chardac, F. Chem. Rev. 2001, 101, 2999. (c) Newkome, G. R.; He, E.;
Moorefield, C. N. Chem. Rev. 1999, 99, 1689. (d) Bosman, A. W.;
J anssen, H. M.; Miejer, E. W. Chem. Rev. 1999, 99, 1665. (e) Twyman,
L. J .; King, A. S. H.; Martin, I. K. Chem. Soc. Rev. 2002, 69. (f) Keijsper,
J . J .; van Leeuwen, P. W. N. M.; van der Made, A. W. Eur. Patent EP
0456317, 1991; Int. Research, U.S. Patent 5,243,079, 1993; Chem.
Abstr. 1992, 116, 129870. (g) Knapen, J . W. J .; van der Made, A. W.;
de Wilde, J . C.; van Leeuwen, P. W. N. M.; Wijkens, P.; Grove, D. M.;
van Koten, G. Nature 1994, 372, 659. (h) Gossage, R. A.; van de Kuil,
L. A.; van Koten, G. Acc. Chem. Res. 1998, 31, 423.
(10) Massey, A. G.; Park, A. J . J . Organomet. Chem. 1964, 2, 245.
(11) Parks, D. J .; Blackwell, J . M.; Piers, W. E. J . Org. Chem. 2000,
65, 3090.
(12) Blackwell, J . M.; Piers, W. E.; McDonald, R. J . Am. Chem. Soc.
2002, 124, 1295.
(4) (a) Hecht, S.; Frechet, J . M. J . Angew. Chem., Int. Ed. 2001, 40,
74. (b) Adronov, A.; Frechet, J . M. J . Chem. Commun. 2000, 1701. (c)
Balzani, V.; Campagna, S.; Denti, G.; J uris, A.; Serroni, S.; Venturi,
M. Acc. Chem. Res. 1998, 31, 26.
(5) (a) Majoral, J .-P.; Caminade, A.-M. Chem. Rev. 1999, 99, 845.
(b) Frey, H.; Lach, C.; Lorenz, K. Adv. Mater. 1998, 10, 279. (c) Steriba,
S.-E.; Frey, H.; Haag, R. Angew. Chem., Int. Ed. 2002, 41, 1329.
(13) Chen, E. Y.-X.; Marks, T. J . Chem. Rev. 2000, 100, 1391.
(14) Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J .-X.; Yamamoto,
Y. Org. Chem. 2000, 65, 6179.
10.1021/om0205187 CCC: $22.00 © 2002 American Chemical Society
Publication on Web 09/17/2002