T. A. Blizzard et al. / Bioorg. Med. Chem. Lett. 13 (2003) 479–483
483
indene 2 was very low due to the formation of several
rearrangement products. However, it was possible to
isolate sufficient quantities of 2 for biological eval-
uation. We were pleased to find that 2 is an extremely
potent estrogen receptor ligand, perhaps slightly more
potent than raloxifene.
Short, L. L.; Venugopalan, M.; Yang, N. N.; Sato, M.; Gla-
sebrook, A. L.; Bryant, H. U. J. Med. Chem. 1998, 41, 1272.
(c) Griese, T. A.; Sluka, J. P.; Bryant, H. U.; Cullinan, G. J.;
Glasebrook, A. L.; Jones, C. D.; Matsumoto, K.; Palkowitz,
A. D.; Sato, M.; Termine, J. D.; Winter, M. A.; Yang, N. N.;
Dodge, J. A. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 14105. (d)
Sato, M.; Griese, T. A.; Dodge, J. A.; Bryant, H. U.; Turner,
C. H. J. Med. Chem. 1999, 42, 1. (e) Delmas, P. D.; Bjarnson,
N. H.; Mitlak, B. H.; Ravoux, A. C.; Shah, A. S.; Huster,
W. J.; Draper, M.; Christiansen, C. N. Engl. J. Med. 1997,
337, 1641. (f) Brzozowski, A. M.; Pike, A. C. W.; Dauter, Z.;
Hubbard, R. E.; Bonn, T.; Engstrom, O.; Ohman, L.; Greene,
G. L.; Gustafsson, J.; Carlquist, M. Nature 1997, 389, 753.
5. Rosati, R. L.; Jardine, P. D. S.; Cameron, K. O.; Thomp-
son, D. D.; Ke, H. Z.; Toler, S. M.; Brown, T. A.; Pan, L. C.;
Ebbinghaus, C. F.; Reinhold, A. R.; Elliott, N. C.; Newhouse,
B. N.; Tjoa, C. M.; Sweetnam, P. M.; Cole, M. J.; Arriola,
M. W.; Gauthier, J. W.; Crawford, D. T.; Nickerson, D. F.;
Pirie, C. M.; Qi, H.; Simmons, H. A.; Tkalcevic, G. T. J. Med.
Chem. 1998, 41, 2928.
6. Levin, M.; D’Souza, N.; Castaner, J. Drugs Future 2001,
26, 841.
7. Labrie, F.; Labrie, C.; Belanger, A.; Simard, J.; Giguere,
V.; Tremblay, A.; Tremblay, G. J. Ster. Biochem. Mol. Biol.
2001, 79, 213.
8. (a) Miller, C. P.; Collini, M. D.; Tran, B. D.; Harris, H. A.;
Kharode, Y. P.; Marzolf, J. T.; Moran, R. A.; Henderson,
R. A.; Bender, R. H. W.; Unwalla, R. J.; Greenberger, L. M.;
Yardley, J. P.; Abou-Gharbia, M. A.; Lyttle, C. R.; Komm,
B. S. J. Med. Chem. 2001, 44, 1654. (b) Miller, C. P.; Harris,
H. A.; Komm, B. S. Drugs 2002, 27, 117.
It is clear from the data in Table 1 that the 2-phenyl-
spiroindenes can bind very efficiently to human estrogen
receptors. The binding data for the rat and human
receptors generally parallel each other with the excep-
tion of the methyl-indene analogue 23 which appears to
be significantly more potent in the rat. The most active
compound, 2, has binding affinity that is comparable to,
or perhaps slightly better than, raloxifene (1) itself. Even
the less complex analogues such as 3, 10, and 11 are
potent estrogen receptor ligands. The binding data con-
firm the anticipated importance of the position of the
phenolic hydroxyl groups. The most active compounds,
2 and 10, have hydroxyl groups in the same orientation
as in 1. The next most active compounds, 3 and 11, have
the A-ring hydroxyl in the same position as in 1 but
either lack the pendant ring hydroxyl, as in 3, or have it
shifted over one carbon, as in 11. Shifting both hydroxyl
groups, as in 34, results in a further decrease in binding
activity. The parent compound, 28, which lacks both
hydroxyl groups, is essentially inactive. Incorporation
of the raloxifene side chain into compound 10, as in
analogue 2, results in only a slight increase in binding
affinity. Addition of a methyl group at C-3 of 10, as in
23, results in only a slight decrease in binding suggesting
that there may be room at this position for small sub-
stituents. Further results in this area will be reported in
future communications from this laboratory.
9. All new compounds were characterized by LC–MS and
1
400, 500, or 600 MHz H NMR.
10. Epstein, J. W.; Brabander, H. J.; Fanshawe, W. J.;
Hofmann, C. M.; McKenzie, T. C.; Safir, S. R.; Osterberg,
A. C.; Coslich, D. B.; Lovell, F. M. J. Med. Chem. 1981, 24,
481.
11. Eck, G.; Julia, M.; Pfeiffer, B.; Rolando, C. Tetrahedron
Lett. 1985, 26, 4725.
12. Dibromide 27 was prepared by NBS bromination of the
TBDPS ether of 3-4,dimethylphenol using the procedure
reported for the bromination of 3,4-dimethylanisole: Huang,
Z.; Lakshmikantham, M. V.; Lyon, M.; Cava, M. P. J. Org.
Chem. 2000, 65, 5413.
13. Lednicer, D.; Babcock, J. C.; Marlatt, P. E.; Lyster, S. C.;
Duncan, G. W. J. Med. Chem. 1965, 8, 52.
14. One of the two isomers was identical to 21 prepared as
described in Scheme 3. The structure of the other isomer was
confirmed by an NOE experiment.
15. Similar results were obtained when this sequence was
applied to the synthesis of 16 and its isomer (corresponding to
33). In this case, the yield of the spiro-alkylation reaction was
so low that deprotection of the product was not attempted and
the sequence was not completed.
References and Notes
1. (a) Manson, J. E.; Martin, K. A. N. Engl. J. Med. 2001,
345, 34. (b) Keating, N. L.; Cleary, P. D.; Rossi, A. S.;
Zaslavsky, A. M.; Ayanian, J. Z. Ann. Intern. Med. 1999, 130,
545. (c) Kooistra, T.; Emeis, J. J. Curr. Opin. Chem. Biol.
1999, 3, 495.
2. (a) Jordan, C. Sci. Amer. 1998, October, 60. (b) Mitlak,
B. H.; Cohen, J. J. Drugs 1999, 57, 665. (c) Miller, C. P.;
Komm, B. S. In Annual Reports in Medicinal Chemistry,
Doherty, A. M., Ed., Academic: San Diego, 2001, Vol. 36,
Chapter 15, pp 149–158 (d) Park, W. C.; Jordan, V. C. Trends
Mol. Med. 2002, 8, 82. (e) Lonard, D. M.; Smith, C. L. Ster-
oids 2002, 67, 15.
16. Kayaleh, N. E.; Gupta, R. C.; Morrissey, J. F.; Johnson,
F. Tetrahedron Lett. 1997, 38, 8121.
17. Argon was used to insure an oxygen-free atmosphere
which proved to be critical for this reaction.
18. Seguin, H.; Gardette, D.; Moreau, M. F.; Madelmont,
J. C.; Gramain, J. C. Synth. Comm. 1998, 28, 4257.
3. Jordan, V. C. Br. J. Pharmacol. 1993, 110, 507.
4. (a) Jones, C. D.; Jevnikar, M. G.; Pike, A. J.; Peters, M. K.;
Black, L. J.; Thompson, A. R.; Falcone, J. F.; Clemens, J. A.
J. Med. Chem. 1984, 27, 1057. (b) Griese, T. A.; Pennington,
L. D.; Sluka, J. P.; Adrian, M. D.; Cole, H. W.; Fuson, T. R.;
Magee, D. E.; Phillips, L.; Rowley, E. R.; Shetler, P. K.;