Binuclear Mesogenic Copper(I) Isocyanide Complexes
tetrahedral nickel(II)11-13 and Cu(I) complexes,14 some
octahedral derivatives of several transition metals,15-20
distorted square-pyramidal complexes of iron21-23 and va-
nadyl,24 a few Co, Cu, Zn, and Fe trigonal-bipyramidal
complexes,25,26 and zirconium square-antiprismatic com-
pounds.27
num(II) derivatives,40-43 and trigonal bipyramidal iron(0)
complexes.26 In this paper we describe the preparation and
liquid crystal behavior of binuclear copper(I) isocyanide
complexes [CuX(CNR)2]2 (X ) halogen; R ) C6H4C6H4-
OC10H21 (LA), C6H4COOC6H4OCnH2n+1 (LB), C6H2(3,4,5-
OCnH2n+1)3 (LC)).
A novel promising structural metallocore for metallome-
sogens might be that represented in Figure 1c, since it sets
the four coordination positions for the promesogenic ligands
in a plane. A structure of this type has been determined by
X-ray diffraction for binuclear copper isocyanide complexes
[CuX(CNR)2]2 (X ) halogen; R ) alkyl or aryl group).28
We decided to explore this structural motif because it appears
in the chemistry of a number of transition metals and might
open a rather wide field for future work. Moreover, isocya-
nide is a particularly appropriate ligand to prepare liquid
crystals, since it gives very stable complexes with many
transition metals in different oxidation states. The diversity
of liquid crystal based on isocyanide metal complexes
includes linear copper(I),29 silver(I),30 and gold(I)31-39 com-
pounds, cis and trans square-planar palladium(II) and plati-
Experimental Section
Materials and Reagents. Literature methods were used to
33 C6H4COOC6H4OCnH2n+1
prepare CNR (R ) C6H4C6H4OCnH2n+1, ,
41
41
C6H4OOCC6H4OCnH2n+1
,
C6H2(3,4,5-OCnH2n+1)3; n ) 4, 6, 8,
10, 12)37 and CuCl.44 Instrumentation was as described elsewhere.26
XRD measurements were performed with a pinhole camera
(Anton-Paar) operating with a point-focused Ni-filtered Cu KR
beam. The sample was held in Lindemann glass capillaries (1 mm
diameter) and heated, when necessary, with a variable-temperature
attachment. The patterns were collected on flat photographic film.
The capillary axis and the film are perpendicular to the X-ray beam.
Spacings are obtained via Bragg’s law.
Only examples procedures are described, as the syntheses were
similar for the rest of the compounds. Yields, IR, and analytical
data are given for all the cooper complexes.
Preparationof[CuX(CNR)2]2[X)Cl,Br,I;R)C6H4C6H4OCnH2n+1,
C6H4COOC6H4OCnH2n+1, C6H2(3,4,5-OCnH2n+1)3]. To a di-
chloromethane (40 mL) suspension of CuX (X ) Cl, Br, I) (0.5
mmol), under an atmosphere of nitrogen, was added 2 equiv of the
corresponding isocyanide (1.1 mmol). After being stirred for 1 h,
the resulting solution was filtered in air and hexane (10 mL) was
added. The solution was concentrated, which afforded the corre-
sponding compounds as white solids, except the chloro and bromo
derivatives that appear as yellow solids.
(11) Griesar, K.; Galyametdinov, Y.; Athanassopoulou, M.; Ouchinnikov,
I.; Haase, W. AdV. Mater. 1994, 6, 381.
(12) Pyzuk, W.; Galyametdinov, Y. Liq. Cryst. 1993, 15, 265.
(13) Mehl, G. H.; Goodby, J. W. Chem. Ber. 1996, 129, 521.
(14) (a) El-Ghayoury, A.; Douce, L.; Skoulios, A.; Ziessel, R. Angew.
Chem., Int. Ed. 1998, 37, 2205. (b) Neve, F.; Ghedini, M.; Levelut,
A. M.; Francescangeli, O. Chem. Mater. 1994, 6, 70.
(15) Lattermann, G.; Schmidt, S.; Kleppinger, R.; Wendorff, J. H. AdV.
Mater. 1992, 4, 30.
(16) Bruce, D. W.; Lin, X. H. J. Chem. Soc., Chem. Commun. 1994, 729.
(17) Zheng, H.; Swager, T. M. J. Am. Chem. Soc. 1994, 116, 761.
(18) Rove, K. E.; Bruce, D. W. J. Chem. Soc., Dalton. Trans. 1996, 3913.
(19) Giroud-Godquin, A. M.; Rassat, A.; Se´ances, C. R. Acad. Sci. Ser.
1982, 2, 241.
(20) Deschenaux, R.; Marandaz, J. L. J. Chem. Soc., Chem. Commun. 1991,
909.
1
Yields, IR, analytical data, and representative H NMR follow
below. When 1H NMR are not given, these are practically identical
to those provided for similar complexes (except for the intensity
of the multiplet comprising the undefined hydrogens of the alkoxy
chains, which is in each case proportional to their number).
R ) C6H4C6H4OC10H21 (Cu-LA). X ) Cl. Yield: 92%. IR
(21) Haase, W.; Griesar, K.; Iskander, M. F.; Galyametdinov, Y. Mol. Cryst.
Liq. Cryst., Sect. C 1993, 171, 1.
(Nujol) [ν(CtN)/cm-1]: 2136 s, 2161 s. H NMR (CDCl3): δ1
1
(22) Galyametdinov, Y.; Ivanovo, G.; Griesar, K.; Prosvirin, A.; Ouchin-
nikov, I.; Haase, W. AdV. Mater. 1992, 3, 115.
7.63, δ2 7.72, AA′XX′ spin system (3J1,2 + J1,2′ ) 8.6 Hz), δ3
5
(23) Marcos, M.; Serrano, J. L.; Alonso, P. J.; Martinez, J. I. AdV. Mater.
7.63, δ4 7.12, AA′XX′ spin system (3J3,4 + J3,4′ ) 8.7 Hz), 4.14
5
1995, 173.
(24) Campillos, E.; Marcos, M.; Omenat, A.; Serrano, J. L. J. Mater. Chem.
1996, 6, 349.
(25) Stebani, U.; Lattermann, G.; Wittenberg, M.; Wendoff, J. H. Angew.
Chem., Int. Ed. Engl. 1996, 35, 1858.
(26) Coco, S.; Espinet, P.; Marcos, E. J. Mater. Chem. 2000, 10, 1297.
(27) Trzaska, S. T.; Zheng, H.; Swager, T. M. Chem. Mater. 1999, 11,
130.
(28) Toht, A.; Floriani, C. J. Chem. Soc., Dalton Trans. 1988, 1599.
(29) Benouazzane, M.; Coco, S.; Espinet, P.; Barbera´, J. J. Mater. Chem.
2001, 11, 1740.
(30) Benouazzane, M.; Coco, S.; Espinet, P.; Barbera´, J. J. Mater. Chem.
2002, 12, 691.
(31) Kaharu, T.; Ishii, R.; Takahashi, S. J. Chem. Soc., Chem. Commun.
1994, 1349.
(32) Kaharu, T.; Ishii, R.; Adachi, T.; Yoshida, T.; Takahasi, S. J. Mater.
Chem. 1995, 5, 687.
(t, J ) 6.5 Hz, OCH), 2.00-1.01 (m, 19H, alkoxy chain). Anal.
Calcd for C92H116Cl2Cu2N4O4: C, 71.76; H, 7.59; N, 3.64. Found:
C, 71.47; H, 7.53; N, 3.84.
X ) Br. Yield: 61%. IR (Nujol) [ν(CtN)/cm-1]: 2153 s. Anal.
Calcd for C92H116Br2Cu2N4O4: C, 67.84; H, 7.18; N, 3.44. Found:
C, 67.91; H, 7.23; N, 3.54.
X ) I. Yield: 71%. IR (Nujol) [ν(CtN)/cm-1]: 2151 s. Anal.
Calcd for C92H116Cu2I2N4O4: C, 64.14; H, 6.79; N, 3.25. Found:
C, 64.09; H, 6.74; N, 3.54.
R ) C6H4COOC6H4OCnH2n+1 (Cu-LB). X ) Cl. n ) 4.
Yield: 69%. IR (Nujol) [ν(CtN)/cm-1]: 2146 s, 2165 s. 1H NMR
(CDCl3): δ1 7.60, δ2 8.25, AA′XX′ spin system (3J1,2 + J1,2′
)
5
8.5 Hz), δ3 7.09, δ4 6.92, AA′XX′ spin system (3J3,4 + 5J3,4′ ) 9.0
Hz), 3.96 (t, J ) 6.5 Hz, OCH2), 1.79-0.95 (m, 7H, alkoxy chain).
Anal. Calcd for C72H64Cl2Cu2N4O12: C, 62.70; H, 4.97; N, 4.06.
Found: C, 62.57; H, 5.05; N, 4.01.
(33) Benouazzane, M.; Coco, S.; Espinet, P.; Mart´ın-AÄ lvarez, J. M. J. Mater.
Chem. 1995, 5, 441.
(34) Coco, S.; Espinet, P.; Falaga´n, S.; Mart´ın-AÄ lvarez, J. M. New. J. Chem.
1995, 19, 959.
(35) Alejos, P.; Coco, S.; Espinet, P. New. J. Chem. 1995, 19, 799.
(36) Bayo´n, R.; Coco, S.; Espinet, P.; Ferna´ndez-Mayordomo, C.; Mart´ın-
AÄ lvarez, J. M. Inorg. Chem. 1997, 36, 2329.
(40) Kaharu, T.; Takahashi, S. Chem. Lett. 1992, 1515.
(41) Kaharu, T.; Tanaka, T.; Sawada, M.; Takahashi, S. J. Mater. Chem.
1994, 4, 859.
(37) Coco, S.; Espinet, P.; Mart´ın-AÄ lvarez, J. M.; Levelut, A. M. J. Mater.
Chem. 1997, 7, 19.
(38) Benouazzane, M.; Coco, S.; Espinet, P.; Mart´ın-AÄ lvarez, J. M. J. Mater.
Chem. 1999, 9, 2327.
(39) Omenat, A.; Serrano, J. L.; Sierra, T.; Amabilino, D. B.; Minquet,
M.; Ramos, E.; Veciana, J. J. Mater. Chem. 1999, 9, 2301.
(42) Coco, S.; D´ıez-Expo´sito, F.; Espinet, P.; Ferna´ndez-Mayordomo, C.;
Mart´ın-AÄ lvarez, J. M.; Levelut, A. M. Chem. Mater. 1998, 10, 3666.
(43) Wang, S.; Mayr, A.; Cheung, K. K. J. Mater. Chem. 1998, 8, 1561.
(44) Kauffman, G. B.; Pinnell, R. P. Inorg. Synth. 1960, 6, 3.
Inorganic Chemistry, Vol. 41, No. 22, 2002 5755