COMMUNICATIONS
[10] H. H. Wenk, R. H¸bert, W. Sander, J. Org. Chem. 2001, 66, 7994
7999.
[11] W. Sander, R. H¸bert, E. Kraka, J. Grafenstein, D. Cremer, Chem.
Eur. J. 2000, 6, 4567 4579.
[12] J. C. Hayes, R. S. Sheridan, J. Am. Chem. Soc. 1990, 112, 5879 5881.
[13] I. R. Dunkin, P. C. P. Thomson, J. Chem. Soc. Chem. Commun. 1982,
1192 1193.
[14] J. Morawietz, W. Sander, J. Org. Chem. 1996, 61, 4351 4354.
[15] H. H. Wenk, A. Balster, W. Sander, D. A. Hrovat, W. T. Borden,
Angew. Chem. 2001, 113, 2356 2359; Angew. Chem. Int. Ed. 2001, 40,
2295 2298.
[16] H. H. Wenk, W. Sander, Chem. Eur. J. 2001, 7, 1837 1844.
[17] O. L. Chapman, J. P. Le Roux, J. Am. Chem. Soc. 1978, 100, 282 285.
[18] W. T. Borden, W. L. Karney, J. Am. Chem. Soc. 1997, 119, 3347 3350.
[19] M. S. Platz in CRC Handbook of Organic Photochemistry, Vol. II (Ed.:
J. C. Scaiano), CRC Press, Boca Raton, FL, USA, 1989, S. 373 393.
[20] In contrast, photolysis of fluorinated diiodobenzene derivatives leads
to the corresponding radicals and diradicals in solid neon but not in
argon, see references [15,16].
[21] N. P. Gritsan, A. D. Gudmundsdottir, D. Tigelaar, Z. D. Zhu, W. L.
Karney, C. M. Hadad, M. S. Platz, J. Am. Chem. Soc. 2001, 123, 1951
1962.
[22] I. R. Dunkin, Matrix Isolation Techniques: A Practical Approach,
Oxford University Press, Oxford, 1998.
[23] Gaussian98 (RevisionA.7), M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A.
Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M.
Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,
S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K.
Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B.
Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G.
Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.
Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G.
Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S.
Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998..
localized in the p orbital perpendicular to the ring plane, while
in 1 the highest spin density is in the ring plane.
Photolysis of 4-iodo-2,3,5,6-tetrafluoroazidobenzene (7) of-
fers an access to the until now unknown C6F4N potential energy
surface and to the unusual high-spin nitrene radical 1. The
influence of different topologies and substituents on the spin
state of nitrene radicals will be investigated in future studies.
Experimental Section
Matrix experiments were carried out according to standard techniques[22]
using a Sumitomo Heavy Industries RDK-408D closed-cycle cryostat. The
lowest temperature available with this system is 2.7K. Matrices were
produced by codeposition of a large excess of neon or argon (Messer-
Griesheim, 99.9999%) and the substance to be isolated on top of a cold CsI
window. During deposition of argon matrices the temperature of the
window was maintained at 30 K. Argon matrices for ESR spectroscopy
were deposited at 13 K on a 2 mm OFHC-copper rod, cooled by an APD-
HC2 closed-cycle cryostat. IR spectra were recorded with a Bruker
Equinox 55 FTIR spectrometer with a resolution of 0.5 cmÀ1 in the range of
400 4000 cmÀ1. ESR spectra were recorded with a Bruker Elexsys E500
spectrometer. Irradiations were carried out with a Gr‰ntzel low-pressure
mercury lamp (254 nm) and an Osram HBO-500-W/2 high-pressure
mercury arc lamp in an Oriel housing with quartz optics, a dichroic mirror,
and a Schott cutoff filter (320 nm). DFT calculations were performed with
the Gaussian 98 suite of programs.[23]
4-Iodo-2,3,5,6-tetrafluoroaniline: Yellow HgO (12.8 g, 59.1 mmol) was
added to a solution of 2,3,5,6-tetrafluoroaniline (12.8 g, 77.6 mmol) in
ethanol (200 mL). The solution was vigorously stirred and iodine (19.8 g,
78.0 mmol) added. The mixture was stirred overnight and filtered over
celite. After addition of Na2SO3 (1 g) the solution was concentrated to a
residual volume of 50 mL using a rotary evaporator. Water (200 mL) was
added and the precipitate was filtered off. Recrystallization from 25%
ethanol in water and subsequent drying in vacuo yielded 4-iodo-2,3,5,6-
tetrafluoroaniline (16.2 g, 55.7mmol, 72%) as dark crystals. MS: m/z(%):
291 (M , 100), 164 (50), 144 (25), 137(60), 127(30), 117(25), 69 (20).
4-Iodo-2,3,5,6-tetrafluoroazidobenzene (7): 4-Iodo-2,3,5,6-tetrafluoroani-
line (3.0 g, 10.3 mmol) was dissolved in trifluoroacetic acid (30 mL) and
cooled to 08C. A solution of sodium nitrite (0.81 g, 11.7mmol) in water
(15 mL) was slowly added while stirring and cooling with an ice bath. The
solution was stirred for further 15 min at 08C. A solution of sodium azide
(0.75 g, 11.5 mmol) in water (15 mL) was added to the stirred solution,
which was subsequently stirred for 1 h at room temperature. After addition
of ether (100 mL) the organic phase was washed with water and dilute
aqueous NaOH, dried (Na2SO4), and evaporated. Chromatography (silica/
Conversion of Hexafluoropropene into
1,1,1-Trifluoropropane by Rhodium-Mediated
À
C F Activation**
Thomas Braun,* Daniel Noveski, Beate Neumann,
and Hans-Georg Stammler
pentane) yielded 7 (2.18 g, 67%) as a colorless oil. MS: m/z (%): 317( M ,
10), 289 (30), 162 (100), 127(30), 117(20), 112 (10), 98 (25), 69 (25).
13C NMR (CDCl3, 50 MHz): d 66.3 (t, J 28.0 Hz), 120.5 (tt, J 2.9 Hz,
12.3 Hz), 140.0 (dm, 256.4 Hz), 147.2 ppm (dm, 248.1 Hz). IR (Ar, 3 K): nÄ
(%): 2229.9 (5), 2196.8 (5), 2130.9 (100), 2112.4 (18), 1634.5 (10), 1492.2
(95), 1478.4 (49), 1307.6 (15), 1223.2 (31), 1012.1 (31), 1001.9 (13), 974.3
Interest in the activation of carbon fluorine bonds by
transition metal centers has been increasing dramatically over
the last decade.[1] Recent discoveries include the stochiomet-
ric[2] and catalytic[3, 4] derivatization of aromatic compounds
À1
(39), 955.3 (6), 807.8 (11), 768.3 (22), 664.5 cm (5).
Received: February 1, 2002 [Z18625]
[*] Dr. T. Braun, Dipl.-Chem. D. Noveski, B. Neumann,
Dr. H.-G. Stammler
[1] a) H. Iwamura, Adv. Phys. Org. Chem. 1990, 179 253; b) H. Iwamura,
J. Phys. Org. Chem. 1998, 11, 299 304.
[2] D. A. Dougherty, Acc. Chem. Res. 1991, 24, 88 94.
[3] A. Rajca, Chem. Rev. 1994, 94, 871 893.
[4] Magnetism: Molecules to Materials (Eds.: J. S. Miller, M. Drillon),
Wiley-VCH, Weinheim, 2001.
[5] P. M. Lahti, B. Esat, R. Walton, J. Am. Chem. Soc. 1998, 120, 5122
5123.
[6] P. M. Lahti, B. Esat, Y. Liao, P. Serwinski, J. Lan, R. Walton,
Polyhedron 2001, 20, 1647 1652.
[7] K. Matsuda, H. Iwamura, Chem. Commun. 1996, 1131 1132.
[8] K. Matsuda, H. Iwamura, Mol. Cryst. Liq. Cryst. 1997, 306, 89 94.
[9] K. Matsuda, G. Ulrich, H. Iwamura, J. Chem. Soc. Perkin Trans. 2
1998, 1581 1588.
Fakult‰t f¸r Chemie
Universit‰t Bielefeld
Postfach 100131, 33501 Bielefeld (Germany)
Fax : (49)521-106-6026
[**] This work was supported by the Deutsche Forschungsgemeinschaft
(grant BR-2065/1-2) and the Fonds der Chemischen Industrie. We
thank Professor G.-V. Rˆschenthaler for a gift of hexafluoropropene
and DMC2 for a loan of RhCl3. T.B. also thanks Professor P. Jutzi for
his generous support.
Supporting information for this article is available on the WWW under
Angew. Chem. Int. Ed. 2002, 41, No. 15
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
1433-7851/02/4115-2745 $ 20.00+.50/0
2745