8198
J. M. Harris, G. A. O’Doherty / Tetrahedron Letters 43 (2002) 8195–8199
(dd, J=8.0, 1.5 Hz, 2H), 7.45-7.33 (m, 6H), 7.04 (dd,
J=15.5, 2.0, Hz, 1H), 6.89 (dd, J=15.5, 4.0 Hz, 1H),
6.80 (dd, J=10.0, 5.0 Hz, 1H), 6.06 (d, J=10.0 Hz,
1H), 5.00 (ddd, J=4.0, 4.0, 2.0 Hz, 1H), 4.42 (dd,
J=4.5, 4.5 Hz, 1H), 4.31 (q, J=7.0 Hz, 1H), 1.23 (d,
J=6.5 Hz, 3H), 1.11 (s, 9H), 0.84 (s, 9H), 0.08 (s, 3H),
0.06 (s, 3H); 13C NMR (125 MHz, CDCl3) l 199.7,
162.0, 145.0, 139.3, 135.7, 135.6 (2C), 133.4, 132.8,
129.8, 127.62, 127.58, 126.0, 121.8, 79.4, 74.9, 63.4,
26.8, 25.4, 20.5, 19.1, 17.9, −4.6, −5.0; FAB HRMS
Calcd for [C32H44O5Si2+Na]+: 587.2625, Found:
587.2636.
HRMS Calcd for [C31H36O6Si+Na]+: 555.2179, Found:
555.2184.
2.4. Phomopsolide C (1c)
Ester 15 (3.0 mg, 5.6 mmol), 0.15 mL of THF, and
triethylamine trihydrofluoride (10 mL, 5.6 mmol) were
added to a plastic vial and stirred at room temperature
for 24 h. The reaction was quenched with saturated
NaHCO3, the aqueous layer was extracted with ether,
and the organic layer was dried (MgSO4). The crude
product was purified by silica gel flash chromatography
eluting with Et2O to yield 1.2 mg (4.1 mmol, 73%) of
phomopsolide C 1c: Rf (100% Et2O)=0.15; [h]2D1=+175
(c 0.05, CH2Cl2); IR (thin film, cm−1) 3500, 2975, 2926,
1730, 1710, 1643, 1429, 1245, 1112; 1H NMR (500
MHz, CDCl3) l 7.05 (dd, J=9.5, 5.5, Hz, 1H), 6.93
(dd, J=16.0, 4.0 Hz, 1H), 6.83 (m, 1H), 6.72 (dd,
J=15.5, 2.0 Hz, 1H), 6.24 (d, J=10.0 Hz, 1H), 5.50
(dd, J=5.5, 3.5 Hz, 1H), 5.31 (ddd, J=3.5, 3.5, 2.0 Hz,
1H), 4.30 (m, 1H), 1.77 (m, 6H), 1.39 (d, J=7.0 Hz,
3H). 13C NMR (75 MHz, CDCl3) d 201.0, 166.9, 161.9,
141.3, 140.6, 139.4, 127.6, 126.3, 125.0, 77.6, 72.4, 63.0,
20.2, 15.0. 12.3.
2.2. (6S)-6-[(4S)-4-(tert-Butyldiphenylsilanyloxy)-3-oxo-
pent-1(E)-enyl]-(5S)-5-hydroxy-5,6-dihydro-pyran-2-one
(14a)
Compound 2a (66 mg, 0.117 mmol) was dissolved in 1
mL of CH3CN and BF3OEt2 (15 uL, 0.12 mmol) was
added to the solution at 0°C. The reaction was stirred
for 1 h. The reaction was quenched with saturated
aqueous NaHCO3, extracted (3×25 mL) with Et2O, and
dried (Na2SO4). The crude product was purified by
silica gel flash chromatography eluting with 100% Et2O
to yield 48 mg (0.106 mmol, 91%) of 15a: Rf (100%
Et2O)=0.15; [h]2D1=+28.3 (c 0.4, CH2Cl2); IR (thin film,
cm−1) 3442, 2957, 2928, 2857, 1731, 1714, 1634, 1470,
1463, 1428, 1384, 1247, 1111; 1H NMR (300 MHz,
C6D6) l 7.78–7.71 (m, 4H), 7.25–7.20 (m, 6H), 7.12 (dd,
J=15.9, 2.1, Hz, 1H), 6.80 (dd, J=15.6, 3.9 Hz, 1H),
5.90 (dd, J=9.9, 5.4 Hz, 1H), 5.62 (d, J=9.9 Hz, 1H),
4.43 (q, J=6.9 Hz, 1H), 4.11 (ddd, J=3.6, 3.3, 2.1 Hz,
1H), 3.20 (dd, J=5.4, 3.0 Hz, 1H), 1.23 (s, 9H), 1.18 (d,
J=6.6, 3H); 13C NMR (125 MHz, C6D6) l 199.5,
161.8, 143.8, 139.5, 136.7, 136.5, 130.6, 128.5, 127.0,
122.9, 79.4, 75.8, 62.5, 27.6, 20.9, 19.9; FAB HRMS
Calcd for [C26H30O5Si+H]+: 473.1760, Found: 473.1759.
Acknowledgements
We thank the Arnold and Mabel Beckman Foundation
for their generous support of our program.
References
1. Becker, H. Agri. Res. 1996, 44, 4–8.
2. Santamour, F. S.; Bentz, S. E. J. Arboricult. 1995, 21,
122–131.
2.3. 2-Methylbut-2-enoic acid (2S)-2-[(4S)-4-(tert-butyl-
diphenylsilanyloxy)-3-oxo-pent-1(E)-enyl]-6-oxo-
3,6-dihydro-2H-pyran-(3S)-3-yl ester (15)
3. Sinclair, W. A.; Lyon, H. H.; Johnson, W. T. Diseases of
Trees and Shrubs; Cornell University Press: Ithaca, NY,
1987; p. 574.
4. (a) Smalley, E. B.; Guries, R. P. Annu. Rev. Phytopathol.
1993, 31, 325–353; (b) Stipes, R. J.; Campana, R. J.
Compendium of Elm Diseases; American Phytopathologi-
cal Society Press: St. Paul, MN, 1981; p. 96.
5. Grove, J. F. J. Chem. Soc., Perkin Trans. 1 1985, 865–
869.
6. Stierle, D. B.; Stierle, A. A.; Ganser, B. J. Nat. Prod.
1997, 60, 1207–1209.
7. For the application of this approach toward several
styryllactone natural products see: (a) Harris, J. M.;
O’Doherty, G. A. Tetrahedron 2001, 57, 5161–5171; (b)
Harris, J. M.; O’Doherty, G. A. Org. Lett. 2000, 2,
2983–2986.
8. (a) Noshita, T.; Sugiyama, T.; Yamashita, K. Agric. Biol.
Chem. 1991, 55, 1207–1209; (b) Noshita, T.; Sugiyama,
T.; Yamashita, K.; Oritani, T. Biosci. Biotech. Biochem.
1994, 58, 740–744.
9. For the synthesis of cryptocarya diacetate see: Hunter, T.
J.; O’Doherty, G. A. Org. Lett. 2001, 3, 2777–2780.
10. Harris, J. M.; O’Doherty, G. A. Tetrahedron Lett. 2000,
41, 183–187.
Alcohol 14a (45 mg, 0.10 mmol), 1.5 mL of CH2Cl2,
DCC (41 mg, 0.2 mmol), DMAP catalytic amount, and
tiglic acid (20 mg, 0.2 mmol) were added to a round
bottom flask and stirred at room temperature for 6 h.
The reaction was filtered through a pad of celite and
concentrated. The crude product was purified by silica
gel flash chromatography eluting with 50% Et2O/hex-
anes to yield 40 mg (0.075 mmol, 75%) of 15a: Rf (50%
Et2O/hexanes)=0.15; [h]2D1=+71.6 (c 0.25, CH2Cl2); IR
(thin film, cm−1) 2956, 2926, 2855, 1738, 1716, 1463,
1
1429, 1245, 1112, 1086; H NMR (300 MHz, CDCl3) l
7.65–7.59 (m, 4H), 7.44–7.33 (m, 6H), 7.07 (dd, J=
15.5, 1.5, Hz, 1H), 6.84 (m, 1H), 6.78 (dd, J=16.0, 4.5
Hz, 1H), 6.24 (d, J=9.5 Hz, 1H), 5.36 (dd, J=5.5, 3.5
Hz, 1H), 5.21 (ddd, J=4.0, 3.5, 2.0 Hz, 1H), 4.30 (q,
J=7.0 Hz, 1H), 1.76 (dd, J=6.0, 1.0 Hz, 3H), 1.25 (s,
3H), 1.22 (d, J=7.0 Hz, 3H), 1.10 (s, 9H); 13C NMR
(125 MHz, CDCl3) l 199.9, 166.5, 164.5, 140.9, 139.9,
137.5, 135.8, 135.7, 130.0, 127.8, 126.7, 125.5, 124.6,
77.6, 74.9, 63.2, 26.9, 20.6, 19.2, 14.5, 11.9; FAB