T. Yoshimitsu et al. / Tetrahedron Letters 43 (2002) 8587–8590
8589
Figure 1.
Figure 2.
3. Metal-promoted Kharasch reactions: (a) Gossage, R. A.;
van de Kuil, L. A.; van Koten, G. Acc. Chem. Res. 1998,
31, 423; (b) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Chem.
Rev. 1994, 94, 519; (c) Bellus, D. Pure Appl. Chem. 1985,
45, 1827; (d) Minisci, F. Chem. Rev. 1975, 8, 165; (e)
Nagashima, H.; Itoh, K. J. Synth. Org. Chem., Jpn. 1995,
298. A recent report: Simal, F.; Wlodarczak, L.; Demon-
ceau, A.; Noels, A. F. Eur. J. Org. Chem. 2001, 2689.
4. Related reactions mediated by triethylborane: (a) Yorim-
itsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K.;
Omoto, K.; Fujimoto, H. J. Org. Chem. 2001, 66, 7776;
(b) Nakamura, T.; Yorimitsu, H.; Shinokubo, H.;
Oshima, K. Synlett 1998, 1351; (c) Mero, C. L.; Porter,
N. A. J. Am. Chem. Soc. 1999, 121, 5155; (d) Baciocchi,
E.; Muraglia, E. Tetrahedron Lett. 1994, 35, 2763; also,
see (e) Barks, J. M.; Gilbert, B. C.; Parsons, A. F.;
Upeandran, B. Synlett 2001, 1719.
ring intermediates have thus been prepared for the studies
toward the total synthesis of paclitaxel. For example, see:
(c) Ref. 11b; (d) Arseniyadis, S.; Mart´ın Hernando, J. I.;
Qu´ılez del Moral, J.; Yashunsky, D. V.; Potier, P. Tetra-
hedron Lett. 1998, 39, 3489; (e) Yadav, J. S.; Sasmal, P.
K. Tetrahedron Lett. 1997, 38, 8769.
8. For pertinent reviews: (a) Marco-Contelles, J.; Alhambra,
C.; Mart´ınez-Grau, A. Synlett 1998, 693; (b) RajanBabu,
T. V. In Prep. Carbohydr. Chem.; Hanessian, S., Ed.;
Dekker: New York, 1997; p. 545; (c) Fraser-Reid, B.;
Alonso, R. A.; McDevitt, R. E.; Venkateswara Rao, B.;
Vite, G. D.; Zottola, M. A. Bull. Soc. Chim. Belg. 1992,
101, 617.
9. Utilization of
D-glucose as paclitaxel D ring synthon;
Paquette, L. A.; Shih, T.-L.; Zeng, Q.; Hofferberth, J. E.
Tetrahedron Lett. 1999, 40, 3519.
10. Syntheses of paclitaxel CD ring systems starting with
5. (a) Hayes, T. K.; Villani, R.; Weinreb, S. M. J. Am.
Chem. Soc. 1988, 110, 5533; (b) Klemmensen, P. D.;
Kolind-Andersen, H.; Madsen, H. B.; Svendsen, A. J.
Org. Chem. 1979, 44, 416; (c) Martin, P.; Steiner, J.;
Winkler, T.; Bellus, D. Tetrahedron Lett. 1985, 26, 3947;
(d) Takano, S.; Nishizawa, S.; Akiyama, M.; Ogasawara,
K. Heterocycles 1984, 22, 1179; (e) Matsumoto, H.;
Ohkawa, K.; Ikemori, S.; Nakano, T.; Nagai, Y. Chem.
Lett. 1979, 1011.
D-glucose derivatives: (a) Momose, T.; Setoguchi, M.;
Fujita, T.; Tamura, H.; Chida, N. Chem. Commun. 2000,
2237; (b) Ermolenko, M. S.; Lukacs, G.; Potier, P. Tetra-
hedron Lett. 1995, 36, 2465; (c) Boa, A. N.; Clark, J.;
Jenkins, P. R.; Lawrence, N. J. J. Chem. Soc., Chem.
Commun. 1993, 151.
11. Other recent approaches to the fully functionalized CD
ring systems: (a) Nakai, K.; Miyamoto, S.; Sasuga, D.;
Doi, T.; Takahashi, T. Tetrahedron Lett. 2001, 42, 7859;
(b) Shing, T. K. M.; Lee, C. M.; Lo, H. Y. Tetrahedron
Lett. 2001, 42, 8361; (c) Uttaro, J.-P.; Audran, G.;
Galano, J.-M.; Monti, H. Tetrahedron Lett. 2002, 43,
2757; (d) Nakada, M.; Kojima, E.; Iwata, Y. Tetrahedron
Lett. 1998, 39, 313.
6. (a) Dowbenko, P. J. Am. Chem. Soc. 1964, 86, 946; (b)
Sam, T. W.; Sutherland, J. K. J. Chem. Soc., Chem.
Commun. 1971, 970.
7. The C3 stereocenter of 3-epi-C ring derivatives has been
shown to be amenable to epimerization at a later stage of
the paclitaxel synthesis: (a) Morihira, K.; Hara, R.;
Kawahara, S.; Nishimori, T.; Nakamura, N.; Kusama,
H.; Kuwajima, I. J. Am. Chem. Soc. 1998, 120, 12980.
Another instance of the construction of the natural C3
configuration through epimerization: (b) Holton, R. A.;
Somoza, C.; Kim, H.-B.; Liang, F.; Biediger, R. J.;
Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S.;
Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.;
Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J.
Am. Chem. Soc. 1994, 116, 1597. Various 3-epi-C or -CD
12. Nielsen, P.; Petersen, M.; Jacobsen, J. P. J. Chem. Soc.,
Perkin Trans. 1 2000, 3706.
13. In contrast to the present case, a related cyclization of
germacrene has been shown to selectively provide trans-
decalin derivatives (Ref. 6b). The preferred formation of
2, possessing the C8b-methyl group and the C3b-hydro-
gen, may be attributed to the conformationally flexible
1,7-diene system in 1 leading to the transition state (I)
that alleviates steric interaction between the C8 methyl
and C4 axial substituents (Fig. 1).