10.1002/anie.201808517
Angewandte Chemie International Edition
COMMUNICATION
[1]
[2]
D. J. Vanderah, P. A. Steudler, L. S. Ciereszko, F. J. Schmitz, J. D.
Ekstrand, D. van der Helm, J. Am. Chem. Soc. 1977, 99, 5780.
Review on Xenia diterpenoids: (a) L. Betschatr, K.-H. Altmann, Current
Pharm. Design, 2015, 21, 5467. (b) T. Huber, L. Weisheit, T. Magauer,
Beilsten J. Org. Chem. 2015, 11, 2521.
42, 2451. (c) T. Magauer, J. Mulzer, K. Tiefenbacher, Org. Lett. 2009,
11, 5306.
[13] (a) D. J. Edmonds, D. Johnston, D. J. Procter, Chem. Rev. 2004, 104,
3371. (b) H.-J. Gong, X.-S. Jia, H.-B. Di, Chinese. J. Org. Chem. 2010,
30, 939. (c) H.-Y. Chuang, M. Isobe, Org. Lett. 2014, 16, 4166. (d) N.
Zhao, S. Yin, S. Xie, H. Yan, P. Ren, G. Chen, F. Chen, J. Xu, Angew.
Chem., Int. Ed. 2018, 57, 3386. (e) E. P. Farney, S. S. Feng, F.
Schꢀfers, S. E. Reisman, J. Am. Chem. Soc. 2018, 140, 1267.
[14] T. R. Kelly, X. Cai, B. Tu, E. L. Elliott, G. Grossmann, P. Laurent, Org.
Lett. 2004, 6, 4953.
[3]
Total syntheses of Xenia diterpenoids: (a) L. A. Paquette, T.-Z. Wang. E.
P inard, J. Am. Chem. Soc. 1995, 117, 1455. (b) D. Renneberg, H.
Pfander, C. J. Leumann, J. Org. Chem. 2000, 65, 9069. (c) O. V.
Larionov, E. J. Corey, J. Am. Chem. Soc. 2008, 130, 2954. (d) C.
Hamel, E. V. Prusov, J. Gertsch, W. B. Schweizer, K.-H. Altmann,
Angew. Chem., Int. Ed. 2008, 47, 10081. (e) D. R. Williams, M. J.
Walsh, N. A. Miller, J. Am. Chem. Soc. 2009, 131, 9038.
[15] M. Tercel, W. A. Denny, J. Chem. Soc., Perkin Trans. 1 1998, 3, 509.
[16]
M. Ihara, T. Suzuki, M. Katogi, N. Taniguchi, K. Fukumoto, J. Chem.
Soc., Chem. Commun. 1991, 646.
[4]
[5]
M. J. Martín, R. Fernández, A. Francesch, P. Amade, S. S. de Matos-
Pita, F. Reyes, C. Cuevas, Org. Lett. 2010, 12, 912.
[17]
(a) A. Rodríguez, M. Nomen, B. W. Spur, J. J. Godfroid, Tetrahedron
Lett. 1999, 40, 5161. (b) M. T. Crimmins, M. W. Haley, E. A. O’Bryan,
Org. Lett. 2011, 13, 4712.
(a) S.-T. Ishigami, Y. Goto, N. Inoue, S.-I. Kawazu, Y. Matsumoto, Y.
Imahara, M. Tarumi, H. Nakai, N. Fusetani, Y. Nakao, J. Org. Chem.
2012, 77, 10962. (b) V. Sio, J. G. Harrison, D. Tantillo, Tetrahedron
Letters, 2012, 53, 6919.
[18] (a) K. C. Nicolaou, T. Montagnon, P. S. Baran, Angew. Chem. Int. Ed.
2002, 41, 993. (b) K. C. Nicolaou, D. L. F. Gray, T. Montagnon, S. T.
Harrison, Angew. Chem. Int. Ed. 2002, 41, 996.
[6]
J.-P. Chen, W. He, Z.-Y. Yang, Z.-J Yao, Org. Lett. 2015, 17, 3379.
[7] Our experiments showed that, the SmI2-based free-radical cyclization of
an unstaturated lactone R1 only gave a cis-fused product R2, which
was unable to convert into R3 under alkaline conditions.
[19] Y. Ito, T. Hirao, T. Saegusa, J. Org. Chem. 1978, 43, 1011.
[20] (a) A. B. Smith III, T. Bosanac, K. Basu, J. Am. Chem. Soc. 2009, 131,
2348. (b) D. R. Williams, K. Nishitani, Tetrahedron Lett. 1980, 21, 4417.
(c) L. A. Paquette, X. Wang, J. Org. Chem. 1994, 59, 2052. (d) S. A.
Ramachandran, R. K. Kharul, S. Marque, P. Soucy, F. Jacques, R.
Chênevert, P. Deslongchamps, J. Org. Chem. 2006, 71, 6149. (e) J. Li,
W. Zhang, F. Zhang, Y. Chen, A. Li, J. Am. Chem. Soc. 2017, 139,
14893.
[21] (a) J. Wang, H. Li, Y. Mei, B. Lou, D. Xu, D. Xie, H. Guo, W. Wang, J.
Org. Chem. 2005, 70, 5678. (b) W. Wang, J. Wang, H. Li, Org. Lett.
2004, 6, 2817.
[8]
Compared to that of trans-fused dihydropyran, our experiment showed
that the cis-fused dihydropyran ring could be formed easily. For
example, cis-diol R4 was converted into R6 by oxidation with PCC and
dehydration with Burgess reagent under mild conditions.
[22]
H. J. Reich, Organic Reactions, Vol. 44, Wiley: New York, 1993,
Chapter 1.
[23] (a) D. L. J. Clive, G. J. Chittattu, V. Farina, W. A. Kiel, S. M. Menchen, C.
G. Russell, A. Singh, C. K. Wong, N. J. Curtis, J. Am. Chem. Soc. 1980,
102, 4438. (b) K. C. Nicolaou, J. Pastor, S. Barluenga, N. Winssinger,
Chem. Commun. 1998, 1947. (c) M. A. Corsello, J. Kim, N. K. Garg,
Nat. Chem. 2017, 9, 944.
[24]
A. Krasovskiy, F. Kopp, P. Knochel, Angew. Chem. Int. Ed. 2006, 45,
497.
[25] P. A. Wender, C. T. Hardman, S. Ho, M. S. Jeffreys, J. K. Maclaren, R.
Quiroz, S. M. Ryckbosch, A. J. Shimizu, J. L. Sloane, M. C. Stevens,
Science. 2017, 358, 218.
[9]
As shown in Scheme 3, intramolecular cyclization of dialdehyde 24 was
firstly tried to deliver unsaturated pyranoside 26 in one step (protocol I).
However, inefficient generation of the enol derived from the aldehyde
(C3 position) and the rigid tricyclodecane architecture blocked such a
cyclization under various conditions, including those using different
bases, Bronsted acids and Lewis acids. In order to stabilize the enol
intermediate, 1,3-dicarbonyl compound 27 was designed for the
cyclization step (protocol II). However, oxidation of the diasteromeric
mixture of triol 25 did not afford 27 as a stable compound or useful
intermediate for further transformation.
[10]
(a) R. Takita, T. Ohshima, M. Shibaski, Tetrahedron Lett. 2002, 43,
4661. (b) S. Matsunaga, J. Das, J. Roels, E. M. Vogl, N. Yamamoto, T.
Iida, K. Yamaguchi, M. Shibasaki, J. Am. Chem. Soc. 2000, 122, 2252.
[11] T. Connolly, Z. Wang, M. A. Walker, I. M. McDonald, K. M. Peese, Org.
Lett. 2014, 16, 4444.
[12] (a) S. Cacchi, E. Morera, G. Ortar, Tetrahedron Lett. 1985, 26, 1109. (b)
H. Sun, J. Yang, K. E. Amaral, B. A. Horenstein, Tetrahedron Lett. 2001,
This article is protected by copyright. All rights reserved.