dihydropyrans [eqn (4)]. Substitution of NH4OAc with
yields ( < 30%). The product was usually purified via crystal-
lization from methanol or crystallization of the hydrochloride
salt from acetone–H2O.†
The range of substituents covered in this three-step reaction
sequence illustrates the functional group compatibility of this
methodology (Table 1). Yields for the isolation of the final
bipyridine products range between 10 and 40% from the starting
aldehyde, which is considerably more efficient than previously
published methods. This reaction sequence reduces the number
of steps required to access many interesting ligands. For
example, bipyridinyl ligands 3h and 3i have been synthesized in
multi-step reactions13 and have found use in the study of light
induced energy and electron transfer processes.14 Although no
photophysical studies have been done, the anthracenyl ligand 3e
could potentially enhance luminescence from chelated metals.
The bromo-substituted aryl-bipyridine 3b is poised to undergo
various coupling or lithiation reactions as previously demon-
strated.15 We hope this new method for the synthesis of
unsymmetrically substituted bipyridinyl ligands will provide
additional stimulus for the use of this robust and versatile ligand
in inorganic and materials chemistry.
(4)
H2NOH·HCl resulted in successful transformation of 2 to 3.
Refluxing acetonitrile gave good yields of bipyridine for all
substrates in reaction times near 6 h. To our surprise, the
reaction is very sensitive to solvent. Methanol, ethanol and
acetic acid all give the desired bipyridine product but in low
Table 1 Yields for reactions in eqn. (2)–(4)
This work was supported by grants from the NSF (Grant no.
CHE-0094349), the Chemical Sciences, Geosciences and
Biosciences Division, Office of Basic Energy Sciences, Office
of Science, U.S. Department of Energy (Grant nos. DE-FG03-
96ER14665 and DE-FG02-01ER15282) and the Alfred P.
Sloan Foundation (JKM). Additionally, we would like to thank
Professors Jeffrey S. Johnson and Dirk Trauner for their helpful
suggestions and advice.
% yield
% yield (1) % yield (2) (3)
Series
a
R
51
66
78
98
92
56
35, 21a
Notes and references
‡ The crude product 2 was successfully used in the last step of the reaction,
although yields were diminished. See entry 2a in Table 1.
b
c
41
1 For reviews, see: (a) L. De Cola and P. Belser, Coord. Chem. Rev., 1998,
177, 301; (b) C. Kaes, A. Katz and M. W. Hosseini, Chem. Rev., 2000,
100, 3553.
41
2 For examples, see: (a) L. C. Sun, L. Hammarstrom, B. Åkermark and S.
Styring, Chem. Soc. Rev., 2001, 30, 36; (b) C. J. Kleverlaan, M. T.
Indelli, C. A. Bignozzi, L. Pavanin, F. Scandola, G. M. Hasselman and
G. J. Meyer, J. Am. Chem. Soc., 2000, 122, 2840.
3 X. Schultze, J. Serin, A. Adronov and J. M. J. Fréchet, Chem. Commun.,
2001, 1160.
d
86
87
51
4 V. Balzani, P. Ceroni, A. Juris, M. Venturi, S. Campagna, F. Puntoriero
and S. Serroni, Coord. Chem. Rev., 2001, 219, 545.
5 (a) S. A. Savage, A. P. Smith and C. L. Fraser, J. Org. Chem., 1998, 63,
10048; (b) P. F. H. Schwab, F. Fleischer and J. Michl, J. Org. Chem.,
2002, 67, 443.
e
f
79
57
90
95
57
18
6 F. Kröhnke, Synthesis, 1976, 1.
7 (a) B. M. Kelly-Basetti, I. Krodkiewska, W. H. F. Sasse, G. P. Savage
and G. W. Simpson, Tetrahedron Lett., 1995, 36, 327; (b) J. Sauer, D.
K. Heldmann and G. R. Pabst, Eur. J. Org. Chem., 1999, 313.
8 (a) P. Korall, A. Borje, P. O. Norrby and B. Åkermark, Acta Chem.
Scand., 1997, 51, 760; (b) G. W. V. Cave and C. L. Raston, J. Chem.
Soc., Perkin Trans. 1, 2001, 3258.
9 (a) C. Engler and A. Engler, Chem. Ber., 1902, 35, 4064; (b) S. Otto, F.
Bertoncin and J. B. F. N. Engberts, J. Am. Chem. Soc., 1996, 118,
7702.
10 For representative examples, see: (a) M. A. Ciufolini and N. E. Byrne,
Chem. Commun., 1988, 1230; (b) M. A. Ciufolini and N. E. Byrne, J.
Am. Chem. Soc., 1991, 113, 8016; (c) M. A. Ciufolini and F.
Roschangar, Tetrahedron, 1997, 53, 11049.
g
h
73
65
77
66
36
25b
11 C. Spino, L. L. Clouston and D. J. Berg, Can. J. Chem., 1997, 75,
1047.
12 D. A. Evans, E. J. Olhava, J. S. Johnson and J. M. Janey, Angew. Chem.,
Int. Ed., 1998, 37, 3372.
13 (a) A. I. Baba, W. Wang, W. Y. Kim, L. Strong and R. H. Schmehl, Syn.
Commun., 1994, 24, 1029; (b) A. L. Rodriguez, G. Peron, C. Duprat, M.
Vallier, E. Fouquet and F. Fages, Tetrahedron Lett., 1998, 39, 1179.
14 (a) T. Soujanya, A. Philippon, S. Leroy, M. Vallier and F. Fages, J.
Phys. Chem. A, 2000, 104, 9408; (b) A. Del Guerzo, S. Leroy, F. Fages
and R. H. Schmehl, Inorg. Chem., 2002, 41, 359.
i
46
65, 78c
51
a Yield of product without isolation of intermediate 2a. b Crude yield, see
supporting data. c Isolated yield via chromatography
15 M. Montalti, S. Wadhwa, W. Y. Kim, R. A. Kipp and R. H. Schmehl,
Inorg. Chem., 2000, 39, 76.
CHEM. COMMUN., 2002, 1496–1497
1497