5336
C. G. Yannopoulos et al. / Bioorg. Med. Chem. Lett. 14 (2004) 5333–5337
13. For a recent review on HCV NS5B polymerase patent
literature, see: Zhang, X. Idrugs 2002, 5, 154.
14. Wang, M.; Ng, K. N. S.; Cherney, M. M.; Chan, L.;
not very different to the final NMR derived structure as
depicted in Figure 2B. The trNOE back-calculations of
this bent shape of 6 reproduced all intense experimental
trNOEÕs (more than 98% of boxed cross-peaks seen in
Fig. 1) as shown in Figure 3.18
´
Yannopoulos, C. G.; Bedard, J.; Morin, N.; Nguyen-Ba,
N.; Bethell, R. C.; Alaoui-Ismaili, M. H.; James, M. N. G.
J. Biol. Chem. 2003, 278, 9489.
15. (a) Chan, L.; Reddy, T. J.; Proulx, M.; Das, S. K.; Pereira,
O.; Wang, W.; Siddiqui, A.; Yannopoulos, C. G.; Poisson,
C.; Turcotte, N.; Drouin, A.; Alaoui, H. M. A.; Bethell,
R.; Hamel, M.; Bilimoria, D.; LÕHeureux, L. C. J. Med.
Chem. 2003, 46, 1283; (b) Reddy, T. J.; Chan, L.; Turcotte,
N.; Proulx, M.; Pereira, O. Z.; Das, S. K.; Siddiqui, A.;
Wang, W.; Poisson, C.; Yannopoulos, C. G.; Bilimoria,
D.; LÕHeureux, L.; Alaoui, H. M. A.; Nguyen-Ba, N.
Bioorg. Med. Chem. Lett. 2003, 13, 3341; (c) Chan, L.;
Reddy, S. K.; Das, S. K.; Reddy, T. J.; Poisson, C.;
Proulx, M.; Pereira, O.; Courchensne, M.; Roy, C.; Wang,
W.; Siddiqui, A.; Yannopoulos, C. G.; Nguyen-Ba, N.;
Labrecque, D.; Bethell, R.; Hamel, M.; Courtemanche-
Asselin, P.; LÕHeureux, L.; David, M.; Nicolas, O.;
Brunette, S.; Bilimoria, D.; Bedard, J. Bioorg. Med. Chem.
Lett. 2004, 14, 793; (d) Chan, L.; Pereira, O.; Reddy, T. J.;
Das, S. K.; Poisson, C.; Courchensne, M.; Proulx, M.;
Siddiqui, A.; Yannopoulos, C. G.; Nguyen-Ba; Roy, C.;
Nasturica, D.; Moinet, C.; Bethell, R.; Hamel, M.;
LÕHeureux, L.; David, M.; Nicolas, O.; Courtemanche-
Asselin, P.; Brunette, S.; Bilimoria, D.; Bedard, J. Bioorg.
Med. Chem. Lett. 2004, 14, 797.
The very weak trNOEÕs were not considered in the struc-
ture calculations or in the back-calculations as they may
arise from complex-mediated spin diffusion which is yet
of unknown nature.
In summary, a trNOE structure of a soluble sulfon-
amide is reported; the ÔbentÕ shape character provided
the first understanding towards better inhibitor design.
The solution conformation of 6 bound to HCV NS5B
polymerase has also been confirmed by X-ray crystallo-
graphy of a related sulfonamide analogue/NS5B com-
plex and these findings will be described elsewhere.
Finally, we are attempting to understand the role of
the template-primer since this study indicates that ade-
quate inhibitor binding to the NS5B is dependent on
the presence of template-primer.
Acknowledgements
16. The expression and purification of HCV NS5B genotype
1b strain BK is described in our publication (see Ref. 15a).
17. Sulfonamide 6 was studied by modeling the structure at
the ionization state that could be reflected in aqueous
conditions at ꢀpH7. MOE (Chemical Computing Group
Inc., Montreal, Canada) was used to build and energy
minimize 6 with the MMFF94s force field using a gradient
´ `
We thank Therese Godbout for her assistance in the
preparation of this manuscript.
References and notes
˚
of 0.01kcal/molA. The resulting minimized structure was
1. (a) Clore, G. M.; Gronenborn, A. M. J. Magn. Reson.
1982, 48, 402; (b) Ni, F.; Scheraga, H. A. Acc. Chem. Res.
1994, 27, 257.
2. (a) Gonnella, N. C.; Bohacek, R.; Zhang, X.; Kolossvary,
I.; Paris, C. G.; Melton, R.; Winter, C.; Hu, S.-I.; Ganu,
V. Proc. Natl. Acad. Sci. U.S.A. 1995, 92(2), 462; (b)
LaPlante, S. R.; Aubry, N.; Bonneau, P. R.; Kukolj, G.;
Lamarre, D.; Lefebvre, S.; Li, H.; Llinas-Brunet, M.;
Plouffe, C.; Cameron, D. R. Bioorg. Med. Chem. Lett.
2000, 10(20), 2271.
used as a starting point for generating a set of conformers
obtained from the use of MOEÕs implemented systematic
conformational searching tool. To visualize the conform-
ational preference of 6, the first 50 lowest energy structures
were examined for each of the representative ÔclosedÕ or
ÔopenÕ shapes. Only the ÔopenÕ shape of 6 was observed.
The average energy difference between the 1st and 50th
˚
structure was approximately 2–3kcal/molA.
18. The MOE minimized structure of 6 was used as starting
points for introducing distance restrains observed from the
trNOE spectrum. The strongest observed H–H correla-
3. Hepatitis C: Global Prevalence. Weekly Epidemiological
Record, 2000; Vol. 75, p 3.
4. WHO 1999, J. Viral Hepatitis 6, 35.
˚
tions were initially assigned to distances of 4–5A and
imposed geometric constraints were set with strengths of
100. Conformations of 6 consistent with observed NOEs
were generated by minimization using the MMFF94s
force field and were saved as .pdb files needed for trNOE
back-calculations using the trNOEPAK program. trNOE-
PAK is part of the ECEPP/NMR (ECEPP algorithm was
originally developed in Prof. ScheragaÕs group at Cornell
University) suite that was developed by Dr. Feng Ni group
at the Biotechnology Research Institute and is currently
used for conformational structure calculations/validations
through comparisons of experimental and calculated
transferred NOE18 spectra. The conformer .pdb file was
used by the PDB2NOE program (part of ECEPP/NMR)
in order to calculate the predicted transferred NOE
intensities that were saved into a .noe file. The .noe was
used by GFIDSJ (part of ECEPP/NMR) to generate a
free-induction decay (FID) matrix (.dat file) using the
calculated NOEs and the experimental chemical shifts, line
widths, coupling constants and attenuation factors for all
observable protons. Finally, the NMRDSP program (part
of ECEPP/NMR) was used as a digital signal processing
5. Saito, I.; Miyamura, T.; Ohbayashi, A.; Harada, H.;
Katayama, T.; Kikuchi, S.; Watanabe, Y.; Koi, S.; Onji,
M., et al. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 6547.
6. Purcell, R. Hepatology 1997, 26, 11S.
7. Takamizawa, A.; Mori, C.; Fuke, I.; Manabe, S.; Mura-
kami, S.; Fujita, J.; Onishi, E.; Andoh, T.; Yoshida, I.;
Okayama, H. J. Virol. 1991, 65, 1105.
8. Kato, N.; Hijikata, M.; Ootsuyama, Y.; Nakagawa, M.;
Ohkoshi, S.; Sugimura, T.; Shimotohno, K. Proc. Natl.
Acad. Sci. U.S.A. 1990, 87, 9524.
9. Grakoui, A.; Wychowski, C.; Lin, C.; Feinstone, S. M.;
Rice, C. M. J. Virol. 1993, 67, 1385.
10. Ago, H.; Adachi, T.; Yoshida, A.; Yamamoto, M.;
Habuka, N.; Yatsunami, K.; Miyano, M. Structure
(London) 1999, 7, 1417.
11. Lesburg, C. A.; Cable, M. B.; Ferrari, E.; Hong, Z.;
Mannarino, A. F.; Weber, P. C. Nat. Struct. Biol. 1999, 6,
937.
12. Bressanelli, S.; Tomei, L.; Roussel, A.; Incitti, I.; Vitale, R.
L.; Mathieu, M.; De Francesco, R.; Rey, F. A. Proc. Natl.
Acad. Sci. U.S.A. 1999, 96, 13034.