Published on Web 10/24/2002
Synthesis and Explosive Decomposition of Organometallic
Dehydro[18]annulenes: An Access to Carbon Nanostructures
Matthew Laskoski, Winfried Steffen, Jason G. M. Morton, Mark D. Smith, and
Uwe H. F. Bunz*
Contribution from the USC NanoCenter and the Department of Chemistry and Biochemistry,
The UniVersity of South Carolina, Columbia, South Carolina 29208
Received May 6, 2002
Abstract: The synthesis of eight new cyclobutadiene or ferrocene-fused organometallic dehydroannulenes
is reported. Cadiot-type coupling of a 1-bromoethynyl-2-silylethynylbenzene derivative to an organometallic
diyne (1,2-diethynyl-3,4-bis(trimethylsilyl)cyclobutadiene(cyclopentadienyl )cobalt or 1,2-diethynylferrocene)
is followed by deprotection and Cu(OAc)2-promoted ring closure. Five of the organometallic dehydroan-
nulenes were structurally characterized. Three of the novel cycles explode at temperatures from 196 to
293 °C and form insoluble carbon materials. The soot produced from 13a shows a high abundance of
onion-like carbon nanostructures. The nanostructures were characterized by high-resolution transmission
electron microscopy.
Introduction
We describe the synthesis, structural characterization, and
explosive decomposition of organometallic dehydro[18]annulenes
containing ferrocene or cyclobutadiene(cyclopentadienyl)cobalt
units. The explosive decomposition of the dehydroannulene 13a
gives rise to the formation of onion-type carbon nanostructures.
Since the beginning of the nineties, the chemistry of “un-
natural” carbon allotropes has flourished. Fullerenes, carbon
onions, nanotubes, and all-carbon ropes are of great interest as
hydrogen storage containers, cloaking layers, and catalysts.1-5
Nanotubes have been made mostly by pyrolytic and high-energy
ablation routes of small molecules or arc evaporation of solid
graphite. The conversion of small molecules into carbon
nanomaterials is promoted by transition-metal catalysts.6 How-
ever, high temperatures and suitable equipment are necessary
for these experiments. Examples of all-carbon molecules from
polyynes are Rubin’s7a and Tobe’s7b access to C608 by pyrolysis
of cyclophane precursors.
Oligoynes and polyynes are known to explosively decompose
upon heating or rubbing.9,10 Vollhardt demonstrated elegantly
that the products of these reactions can be closed-shell carbon
structures, such as carbon onions or metal-filled carbon nano-
tubes.10 The authors examined different exploding oligoynes and
found that structures 1-3 gave closed-shell carbon materials.
They contended that the explosion of carbon-rich materials may
be a general way to make carbon nanostructures. From our
experience and the lack of other literature references, it seems
sc.edu.
(1) (a) Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes
and Carbon Nanotubes; Academic Press: San Diego, CA, 1996. (b) For
carbon nanotubes formation see: Terrones, M.; Hsu, W. K.; Kroto, H. W.;
Walton, D. R. M. Top. Curr. Chem. 1999, 199, 189-234. (c) Sinnott, S.
B.; Andrews, R. Crit. ReV. Solid State Mater. Sci. 2001, 26, 145-249. (d)
Iijima, S. Nature 1991, 354, 56-58. Ajayan, P. M. Chem. ReV. 1999, 99,
1787-1799. (e) Ugarte, D. Carbon 1995, 33, 989-993. (f) Ugarte, D.
Carbon 1994, 32, 1245-1248.
(7) (a) Rubin, Y.; Parker, T. C.; Pastor, S. J.; Jalisatgi, S.; Boulle, C.; Wilkins,
C. L. Angew. Chem., Int. Ed. 1998, 37, 1226-1229. (b) Tobe, Y.;
Nakagawa, N.; Naemura, K.; Wakabayashi, T.; Shida, T.; Achiba, Y. J.
Am. Chem. Soc. 1998, 120, 4544-4545.
(2) (a) Che, G. L.; Lakshmi, B. B.; Martin, C. R.; Fisher, E. R. Langmuir
1999, 15, 750-758. (b) Dahn, J. R.; Zheng, T.; Liu, Y. H.; Xue, J. S.
Science 1995, 270, 590-593.
(8) For a direct synthesis of C60 see: Scott, L. T.; Boorum, M. M.; McMahon,
B. J.; Hagen, S.; Mack, J.; Blank, J.; Wegner, H.; de Meijere, A. Science
2002, 295, 1500-1503.
(3) Rao, A. M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P. C.; Williams,
K. A.; Fang, S.; Subbaswamy, K. R.; Menon, M.; Thess, A.; Smalley, R.
E.; Dresselhaus, G.; Dresselhaus, M. S. Science 1997, 275, 187-191.
(4) Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D.
S.; Heben, M. J. Nature 1997, 386, 377-379.
(9) (a) De Meijere, A.; Kozhushkov, S.; Haumann, T.; Boese, R.; Puls, C.;
Cooney, M. J.; Scott, L. T. Chem. Eur. J. 1995, 1, 124-131. (b) Zhou, Q.;
Carroll, P. J.; Swager, T. M. J. Org. Chem. 1994, 59, 1294-1301. (c) Bunz,
U. H. F.; Enkelmann, V. Chem. Eur. J. 1999, 5, 263-266.
(5) Tans, S. J.; Devoret, M. H.; Dai, H. J.; Thess, A.; Smalley, R. E.; Geerligs,
L. J.; Dekker, C. Nature 1997, 386, 474-477.
(6) See, for example: Rao, C. N. R.; Satishkumar, B. C.; Govindaraj, A.; Nath,
M. Chem. Phys. Chem. 2001, 2, 78-105.
(10) (a) Boese, R.; Matzger, A. J.; Vollhardt, K. P. C, J. Am Chem. Soc. 1997,
119, 2052-2053. (b) Dosa, P. I.; Erben, C.; Iyer, V. S.; Vollhardt, K. P.
C.; Wasser, I. M. J. Am. Chem. Soc. 1999, 121, 10430-10431. (c) Faust,
R. Angew. Chem., Int. Ed. 1998, 37, 2825-2828.
9
13814
J. AM. CHEM. SOC. 2002, 124, 13814-13818
10.1021/ja026809o CCC: $22.00 © 2002 American Chemical Society