696
S. Maiti et al. / Tetrahedron Letters 53 (2012) 694–696
Table 1
Med/14/1239/2006) is gratefully acknowledged. We are thankful
to IICB, Jadavpur for spectral analysis and finally the college
authorities for providing research facilities.
Results of the reaction between 2 and 3 under different conditions
Entry
2
3
Catalyst (mol %) Time (h) Product Yield (%) Mp (°C)
1
2
3
2a 3a
2b 3a
2c 3a
—
—
—
20
15
30
5a
5
5
29b
25b
15c
13
06
26
53
57
45
05
87
85
89
90
58
30c
05
25b
22b
63
65
77
58
214–21618f
212–214
214–216
154–156
154–156
154–156
154–156
154–156
154–156
214–216
154–156
154–156
198–200
150–154
196–198
214–216
160–162
214–216
214–216
262–264
170–172
250–252
218–220
References and notes
1. Thompson, A. M.; Hollis Shoalter, H. D.; Denny, W. A. J. Chem. Soc., Perkin Trans.
1 2000, 1843–1852.
2. Chan, L.; Jin, H.; Stefanac, P.; Lavallee, J. F.; Falardeau, G.; Wang, W.; Bedard, J.;
May, S.; Yuen, L. J. Med Chem. 1999, 42, 3023–3025.
3. Melamed, J. Y.; Eqbertson, M. S.; Varga, S.; Vacca, J. P.; Moyer, G.; Gabryelski, L.;
Felock, P. J.; Stillmock, K. A.; Witmer, M. V.; Schleif, W. A.; Hajuda, D. J.; Leinard,
Y.; Jin, L.; Ellis, J. D.; Young, S. D. Bioorg. Med. Chem. Lett. 2008, 18, 5307–5310.
4. Furukawa, K.; Odai, O.; Ohno, K.; Oka, M.; Tominaqa, Y. U.S. Patent, 1994,
5367078.
5. Suresh, T.; Dhanabal, T.; Nandha Kumar, R.; Mohan, P. S. Indian J. Chem. 2005,
44B, 2375–2379. and refernces therein.
6. Povarov, L. S. Russ. Chem. Rev. 1967, 36, 656–670.
7. Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996, 52, 15031–15070.
8. Ma, Y.; Qian, C.; Xie, M.; Sun, J. J. Org. Chem. 1999, 64, 6462–6467.
9. Zhang, J.; Li, C.-J. J. Org. Chem. 2002, 67, 3969–3971.
10. Maiti, G.; Kundu, P. Tetrahedron Lett. 2006, 47, 5733–5736.
11. Yadav, J. S.; Reddy, B. V. S.; Sadasiv, K.; Reddy, P. S. R. Tetrahedron Lett. 2002, 43,
3853–3856.
6b
6b
6b
6b
6b
6b
5
6b
6b
6c
6d
6e
5
6a
5
5
8a
8b
8c
8d
4
5
6
7
8
2c 3a FeCl3(20)
2c 3a BF3ÁEt2O
2c 3a InCl3 (20)
2c 3a TPP (20)
2c 3a TPP (10)
5
4
15
8
12
9
2c 3a TPP (40)
2c 3a TPP (60)
2d 3a TPP (40)
2c 3b TPP (40)
2d 3b TPP (40)
2b 3a TPP (40)
6
6
6
6
6
20
10
11
12
13
14
15
16
17
18
19
20
2e 3a InCl3(20)
2e 3a TPP (40)
2f 3a TPP (40)
2g 3a TPP (40)
2f 3b TPP (40)
2g 3b TPP (40)
15
15
5
6
5
12. (a) Sabitha, G.; Perumal, P. T. Tetrahedron Lett. 2006, 47, 3589–3593; (b)
Sridharan, V.; Avendano, C.; Menendez, J. C. Tetrahedron 2007, 63, 673–681.
13. Kudale, A. K.; Kendall, J.; Miller, D. O.; Collins, J. L.; Bodwell, G. J. J. Org. Chem.
2008, 73, 8437–8447.
6
14. Anniyappan, M.; Muralidharan, D.; Perumal, P. T. Tetrahedron Lett. 2003, 44,
3653–3657.
15. Nascimento, J. E. R.; Barcellos, A. M.; Sachini, M.; Perin, G.; Lenardao, E. J.; Alves,
D.; Jacob, R. G.; Missau, F. Tetrahedron Lett. 2011, 52, 2571–2574.
16. Manian, R. D. R. S.; Jayashankaran, J.; Raghunathan, R. Tetrahedron Lett. 2007,
48, 4139–4142.
Ar = p-C6H4(Me).
a
Use of 2 equiv of 3a produced 80% of 5.
b
c
10–15% of 2 was recovered and trace amount of 4 was detected.
Very small amount of 4 was also isolated.
17. (a) Ramesh, S.; Gaddam, V.; Nagarajan, R. Synlett 2010, 757–760; (b)
Majumdar, K. C.; Ponra, S.; Taher, A. Synthesis 2011, 463–468.
18. (a) Singh, G.; Singh, R.; Girdhar, N. K.; Ishar, M. P. S. Tetrahedron 2002, 58,
2471–2480; (b) Bandyopadhyay, C.; Sur, K. R.; Patra, R.; Banerjee, S. J. Chem.
Res. (S) 2003, 459–460. J. Chem. Res. (m), 2003, 847–856; (c) Singh, G.; Singh, G.;
Ishar, M. P. S. Helv. Chim. Acta 2003, 86, 169–180; (d) Singh, G.; Singh, L.; Ishar,
M. P. S. Tetrahedron 2002, 58, 7883–7890; (e) Maiti, S.; Panja, S. K.;
Bandyopadhyay, C. Tetrahedron Lett. 2009, 50, 3966–3969; (f) Maiti, S.; Panja,
S. K.; Bandyopadhyay, C. Indian J. Chem., Sect. B 2009, 48, 1447–1452; (g) Maiti,
S.; Panja, S. K.; Bandyopadhyay, C. J. Heterocycl. Chem. 2010, 47, 973–981; (h)
Maiti, S.; Panja, S. K.; Bandyopadhyay, C. J. Chem. Res. 2011, 84–86; (i) Maiti, S.;
Panja, S. K.; Bandyopadhyay, C. Tetrahedron Lett. 2011, 52, 1946–1948; (j) Maiti,
S.; Mallick, S.; Panja, S. K.; Pal, C.; Bandyopadhyay, C. Synlett 2011, 2001–2004.
19. Singh, G.; Ishar, M. P. S.; Gupta, V.; Singh, G.; Kalyan, M.; Bhella, S. S.
Tetrahedron 2007, 63, 4773–4778.
IIDA reaction but their combined effect led to the desired result.
Structure of 6 was assigned on the basis of IR, 1H NMR, 13C NMR
and mass spectral analysis.23 The cis stereochemistry of CD-ring
juncture in 6 was assigned on the basis of small coupling constant
value (J = 2.7 Hz) at d 5.13 for C14b–H.
The above methodology was then extended with 2f and 2g. An
equimolar mixture of 2f or 2g and 3a or 3b in CH3CN was stirred at
room temperature for 5–6 h in the presence of TPP (40 mol %) and
Na2SO4 to produce 8a–d in moderate yields (entries 17–20). The
noticeable thing is that the CD-ring juncture in 8 is trans in nature,
which is observed from the large coupling constant value
(J = 9.9 Hz) at d 4.6 for C14b–H.
Formation of 6 and 8 may be rationalised as follows: 2 reacts
with 3 to form the aldimine 7, which attains conformation 7A or
7B for performing [4+2] cycloaddition reaction. Endo-approach of
dienophile in 7A is favoured when R4 = Me to form 6, whereas
exo-approach in 7B led to the formation of trans-fused product 8
when R4 = Ph (Scheme 2). In the exo-approach (7B) (R4 = Ph), this
phenyl group becomes endo to the heterodiene and is supposed
to exert additional secondary bonding interaction.
20. Maiti, S.; Lakshmykanth, T. M.; Panja, S. K.; Mukhopadhyay, R.; Datta, A.;
Bandyopadhyay, C. J. Heterocycl. Chem. 2011, 48, 763–768.
21. Maiti, S.; Panja, S. K.; Bandyopadhyay, C. Tetrahedron 2010, 66, 7625–7632.
22. General procedure for the synthesis of 6:
A solution of 2
(R3 = R4 = Me)
(0.25 mmol) and 3 (0.25 mmol) in dry CH3CN (5 mL) containing anhydrous
Na2SO4 (355 mg, 2.5 mmol) was stirred with TPP (36 mg, 40 mol %) at room
temperature for appropriate time (Table 1). After completion (TLC), the
reaction mixture was poured into water (50 mL). The resulting turbid
solution was extracted with EtOAc. The EtOAc solution was dried over
Na2SO4 and purified by column chromatography over silica gel (100–200) to
obtain 6 in good yield using benzene as eluent.
23. 4,6,6,12-Tetramethyl-8-phenyl-1,6,6a,7,8,14b-hexahydro-benzo[b]chromeno
In conclusion, we have reported a substituent- and catalyst-
controlled intramolecular imino-Diels–Alder reaction involving 2-
[2,3-h][1,6]naphthyridin-14(14H)-one (6b): IR (KBr)
mmax: 3350, 2968, 2912,
2866, 1611, 1550 cmÀ1 1H NMR (CDCl3) d: 1.39 (3 H, s, 6-CH3), 1.43 (3 H, s, 6-
;
CH3), 1.99–2.05 (1H, m, 6a-H), 2.23 (3 H, s, 4-CH3), 2.42 (3 H, s, 12-CH3), 3.60
(1H, dd, J = 11.7, 3.9 Hz, 7-Ha), 3.73 (1H, dd, J = 12.0, 11.7 Hz, 7-Hb), 4.46 (1H, br
s, exchangeable, 1-H), 5.13 (1H, d, J = 2.7 Hz, 14b-H), 6.38 (1H, d, J = 8.1 Hz, 2-
H), 6.82 (1H, br d, J = 8.1 Hz, 3-H), 6.93 (1H, br s, 5-H), 6.95 (1H, d, J = 8.1 Hz,
10-H), 7.28–7.36 (4H, m, ArH), 7.40–7.46 (2H, m, ArH), 7.98 (1H, br s, 13-H);
13C NMR (CDCl3) d: 20.7, 20.8, 25.9, 33.8, 34.4, 41.2, 41.9, 49.6, 98.8, 114.0,
116.1, 122.6, 125.0, 125.7, 125.9, 126.0, 126.5, 126.8, 127.9, 129.1, 132.9, 134.4,
138.3, 141.8, 151.3, 158.3, 175.0; Mass m/z: 437 (M++H), 459 (M++Na); Anal.
calcd for C29H28N2O2: C, 79.79; H, 6.46; N, 6.42%. Found: C, 79.63; H, 6.39; N,
6.36%.
(N-alkenyl-N-aryl)aminochromone-3-carbaldehyde
amines, which led to the synthesis of hitherto unreported
chromenonaphthyridines.
and
aryl
Acknowledgments
S.M. is grateful to CSIR, India for SRF. Financial assistance from
the Department of Biotechnology (DBT), India (No. BT/PR8217/