C O M M U N I C A T I O N S
Scheme 2. Correlation between the Chiral Substrate and the
Chiral Catalysts
In summary, we have demonstrated the first example of catalytic
asymmetric intramolecular [3 + 2] cycloaddition of hydrazones/
olefins. The cycloaddition proceeded in the presence of a chiral
zirconium complex as a catalyst under mild conditions. While the
adducts, chiral pyrazolidine derivatives, are a biologically interesting
class of compounds, the N-N bonds of the adducts have been
shown to be readily cleaved under reductive conditions to afford
chiral diamine derivatives.
Acknowledgment. This work was partially supported by
CREST and SORST, Japan Science Technology Corporation, and
a Grant-in-Aid for Scientific Research from Japan Society of the
Promotion of Sciences.
1
Supporting Information Available: Experimental details and H
and 13C NMR spectra of the products (PDF). This material is available
Scheme 3. Transformation of the Products by N-N Bond
Cleavage
References
(1) Review: ComprehensiVe Organic Synthesis; Trost, B. M., Ed.; Pergamon
Press: Oxford, 1991; Vol. 5, Chapter 1.1.
(2) Review: Gothelf, K. V.; Jørgensen, K. A. Chem. ReV. 1998, 98, 863.
(3) (a) T. Tashiro Nippon Kagaku Kaishi 1988, 684. (b) Shurig, J. E.;
Brandner, W. T.; Huflutalen, J. B.; Doyle, G. J.; Gylys, J. A. In Cisplatin;
Academic Press: New York, 1980, 227. (c) Armarego, W. L. F.;
Kobayashi, T. J. Chem. Soc. 1970, 1597.
(4) (a) Hesse, K.-D.; Liebigs Ann. Chem. 1970, 743, 50. (b) Fevre, G. L.;
Sinbandhit, S.; Hamerin, J. Tetrahedron 1979, 35, 1821. (c) Fouchet, B.;
Joucla, M.; Hamerin, J. Tetrahedron Lett. 1981, 22, 1333. (d) Shimizu,
T.; Hayashi, Y.; Ishikawa, S.; Teramura, K. Bull. Chem. Soc. Jpn. 1982,
55, 2456. (e) Shimizu, T.; Hayashi, Y.; Miki, M.; Teramura K. J. Org.
Chem. 1987, 52, 2277.
(5) (a) Grigg, R.; Kemp, J.; Thompson, N. Tetrahedron Lett. 1978, 2827. (b)
Snider, B. B.; Conn, R. S. E.; Sealfon, S. J. Org. Chem. 1979, 44, 218.
(c) Ibrahim, Y. A.; Abdou, S. E.; Selim, S. Heterocycles 1982, 19, 819.
(d) Grigg, R.; Dowling, M.; Jordan, M. W.; Sridharan, V. Tetrahedron
1987, 43, 5873. (e) Badawy, M. A.; El-Bahaie, S. A.; Kadry, A. M.;
Ibrahim, Y. A. Heterocycles 1988, 27, 7.
contained no methyl group at the â-position of the hydrazone,
proceeded slowly, and moderate diastereoselectivity and high
enantioselectivity were observed in the presence of 20 mol % of
catalyst. This lower reactivity could be explained by the Ingold-
Thorpe effect.15 When hydrazone 1c having a thioketal moiety was
employed, the reaction proceeded smoothly to afford the desired
cyclic adduct in high yield with high diastereo- and enantioselec-
tivities (entry 4). It was also found that the substituents at the
terminal position affected the reactivity significantly, and the
reactions proceeded sluggishly in the cases of mono and no
substituted substrates 1d and 1e. On the other hand, hydrazone 1f
having a ketene dithioacetal moiety at the terminal position reacted
smoothly to afford the desired pyrazolidine derivative with good
selectivity. It should be noted that these thioacetal moieties can be
readily converted to carbonyl and other functional groups.16
Moreover, both ether-type hydrazone/olefin 1g and hydrazone 1h
possessing an aromatic ring cyclized efficiently with high selectivity
in the presence of the chiral Zr catalyst (entries 7, 8).
(6) (a) Oyamada, H.; Kobayashi, S. Synlett 1998, 249. (b) Kobayashi, S.;
Furuta, T.; Sugita, K.; Oyamada, H. Synlett 1998, 1019. (c) Kobayashi,
S.; Sugita, K.; Oyamada, H. Synlett 1999, 138. (d) Kobayashi, S.; Furuta
T.; Sugita, K.; Okitsu, O.; Oyamada, H. Tetrahedron Lett. 1999, 40, 1341.
(e) Manabe, K.; Oyamada, H.; Sugita, K.; Kobayashi, S. J. Org, Chem.
1999, 64, 8054. (f) Kobayashi, S.; Hirabayashi, R. J. Am. Chem. Soc.
1999, 121, 6942. (g) Okitsu, O.; Oyamada, H.; Furuta T.; Kobayashi, S.
Heterocycles 2000, 52, 1143. (h) Hirabayashi, R.; Ogawa, C.; Sugiura,
M.; Kobayashi, S. J. Am. Chem. Soc. 2001, 123, 9493. (i) Kobayashi, S.;
Hamada, T.; Manabe, K. Synlett 2001, 1140.
(7) Unpublished results.
(8) Lewis acid-mediated formation of cyclic azo compounds from tosylhy-
drazones and alkenes was reported. See: Wilson, R. M.; Rekers, J. W. J.
Am. Chem. Soc. 1979, 101, 4005.
(9) (a) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 1997, 119,
7153. (b) Kobayashi, S.; Ueno, M.; Ishitani, H. J. Am. Chem. Soc. 1998,
120, 431. (c) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc.
2000, 122, 8180. (d) Kobayashi, S.; Hasegawa, Y.; Ishitani, H. Chem.
Lett. 1998, 1131. (e) Ishitani, H.; Kitazawa, T.; Kobayashi, S. Tetrahedron
Lett. 1999, 40, 2161.
We then investigated the reaction of chiral hydrazones /olefins.
In the presence of a chiral zirconium complex prepared from Zr-
(OPr)4-PrOH and (R)-2d, intramolecular [3 + 2] cycloaddition of
4-nitrobenzoylhydrazone 1i derived from (S)-citronellal proceeded
to afford the trans-pyrazolidine derivative with high selectivity. On
the other hand, when (S)-2d was used under the same reaction
conditions, the corresponding cis-adduct was obtained with good
selectivity. Although precise reaction pathways in these reactions
are not clear at this stage, it should be noted that the cis/trans
selectivity was controlled by the chirality of the chiral catalysts
(Scheme 2). The pyrazolidine derivatives obtained by this [3 + 2]
cycloaddition reaction can be readily transformed to 1,3-diamine
derivatives via N-N bond cleavage with samarium iodide (SmI2)
(Scheme 3).17 Interestingly, synthetically useful nitrile 6 was formed
when pyrazolidine derivative 3f having a thioketal moiety was
treated with SmI2.
(10) (a) Kobayashi, S.; Komiyama, S.; Ishitani, H. Angew. Chem., Int. Ed.
1998, 37, 979. (b) Kobayashi, S.; Kusakabe, K.; Komiyama, S.; Ishitani,
H. J. Org. Chem. 1999, 64, 4220. (c) Kobayashi, S.; Kusakabe, K.; Ishitani,
H. Org. Lett. 2000, 2, 1225.
(11) (a) Ishitani, H.; Komiyama, S.; Kobayashi, S. Angew. Chem., Int. Ed.
1998, 37, 3186. (b) Ishitani, H.; Komiyama, S.; Hasegawa, Y.; Kobayashi,
S. J. Am. Chem. Soc. 2000, 122, 762.
(12) Gastner, T.; Ishitani, H.; Akiyama, R.; Kobayashi, S. Angew. Chem., Int.
Ed. 2001, 40, 1896.
(13) (a) Ishitani, H.; Yamashita, Y.; Shimizu, H.; Kobayashi, S. J. Am. Chem.
Soc. 2000, 122, 5403. (b) Yamashita, Y.; Ishitani, H.; Shimizu, H.;
Kobayashi, S. J. Am. Chem. Soc. 2002, 124, 3292.
(14) Yamashita, Y.; Saito, S.; Ishitani, H.; Kobayashi, S. Org. Lett. 2002, 4,
1221.
(15) (a) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc. 1915, 107,
1080. (b) Kirby, A. J. AdV. Phys. Org. Chem. 1980, 17, 183.
(16) (a) ComprehensiVe Organic Synthesis; Trost, B. M., Ed.; Pergamon
Press: Oxford, 1991; Vol. 8, Chapter 4.3, 835. (b) ProtectiVe Groups in
Organic Synthesis, 3rd ed.; Green, T. W., Wuts, P. G., Eds.; John Wiley
& Sons: New York, 1999.
(17) Burk, M. J.; Feaster, J. E. J. Am. Chem. Soc. 1992, 114, 6266.
JA027681D
9
J. AM. CHEM. SOC. VOL. 124, NO. 46, 2002 13679