LETTER
Virulent Antigenic -1,2-Linked Oligomannans of Candida albicans
1321
References
(1) (a) Pugliese, A.; Torre, D.; Baccino, F. M.; Di Perri, G.;
Cantamessa, C.; Gerbaudo, L.; Saini, A.; Vidotto, V. Cell
Biochem. Funct. 2000, 18, 235. (b) Bektic, J.; Lell, C. P.;
Fuchs, A.; Stoiber, H.; Speth, C.; Lass-Florl, C.; Zepelin, M.
B.; Dierich, M. P.; Wurzner, R. FEMS Immunol. Med.
Microbiol. 2001, 31, 65. (c) Cassone, A.; Cauda, R. Trends
Microbiol. 2002, 10, 177.
(2) Calderone, R. A.; Fonzi, W. A. Trends Microbiol. 2001, 9,
327.
(3) Shibata, N.; Ichikawa, T.; Tojo, M.; Takahashi, M.; Ito, N.;
Ohkubo, Y.; Suzuki, S. Arch. Biochem. Biophys. 1985, 243,
338.
(4) Rees, D. A.; Scott, W. E. J. Chem. Soc. 1971, 469, 1971.
(5) (a) Nobuyuki, S.; Hisamichi, K.; Kikuchi, T.; Kobayashi, H.;
Ikawa, Y.; Suzuki, S. Biochemistry 1992, 31, 5680.
(b) Shibata, N.; Hisamichi, K.; Kobayashi, H.; Suzuki, S.
Arch. Biochem. Biophys. 1993, 302, 113. (c) Cipollo, J. F.;
Trimble, R. B.; Rance, M.; Cavanagh, J. Anal. Biochem.
2002, 278, 52.
(6) Jouault, T.; Lepage, G.; Bernigaud, A.; Trinel, P. A.; Fradin,
C.; Wieruszeski, J. M.; Strecker, G.; Poulain, D. Infect.
Immun. 1995, 63, 2378.
(7) (a) Nitz, M.; Chang-Chun, L.; Otter, A.; Cutler, J. E.;
Bundle, D. R. J. Biol. Chem. 2002, 277, 3440. (b) Mitz, M.;
Bundle, D. R. J. Org. Chem. 2001, 66, 8411.
Figure 1 1H NMR and 13C NMR ‘windows’ for monitoring trans-
formations of selected substrates.
(8) (a) Mootoo, D. R.; Konradsson, P.; Fraser-Reid, B. J. Am.
Chem. Soc. 1985, 111, 8540. (b) Roberts, C.; Madsen, R.;
Fraser-Reid, B. J. Am. Chem. Soc. 1995, 117, 1546.
(c) Madsen, R.; Udodong, U. E.; Roberts, C.; Mootoo, D. R.;
Konradsson, P.; Fraser-Reid, B. J. Am. Chem. Soc. 1995,
117, 1554. (d) Campbell, A. S.; Fraser-Reid, B. J. Am.
Chem. Soc. 1995, 117, 10387. (e) Arasappan, A.; Fraser-
Reid, B. J. Org. Chem. 1996, 61, 2401.
moiety (13a, n = 0 and 1), but ca 100 ppm in the manno
(14a, n = 0 and 1). The stereoselectivity of the L-selectride
reduction,18 could also be easily checked by studying
1
the H NMR spectrum of the acetylated products 15b
(n = 0–3) which showed the H2 proton of the newly intro-
duced manno units to be shifted downfield to ca 5.6 ppm,
Figure 1B.
(9) Trinel, P.-A.; Plancke, Y.; Gerold, P.; Jouault, T.; Delplace,
F.; Schwarz, R. T.; Streckers, G.; Poulain, D. J. Biol. Chem.
1999, 274, 30520.
(10) Mach, M.; Schlueter, U.; Mathew, F.; Fraser-Reid, B.;
Hazen, K. C. Tetrahedron 2002, 58, 7345.
(11) Kochetkov, N. K.; Khorlin, A. Y.; Boschkov, A. F.
Interestingly the anomeric proton of the gluco-moiety of
7 is ca 4.55 ppm for n = 0 (not shown in Fig 1A) and
moves downfield to 5.59 for 8 (n = 1) and 5.76 for both 9
(n = 2) and 10 (n = 3). The spectroscopic data for the 8-
mer (15a, n = 6) fully support the assigned structure.22
Tetrahedron 1967, 23, 693.
(12) Wilson, B. G.; Fraser-Reid, B. J. Org. Chem. 1995, 60, 317.
(13) Paulsen, H. Angew. Chem. Int. Ed. Engl. 1982, 21, 155;
Angew Chem., 1982, 94, 184.
Debenzylation is most conveniently carried out by trans-
fer hydrogenation using formic acid. For example 15a
(n = 4) gave 16 quantitatively. Detailed analyses of
chemical shifts in protected and deprotected samples of
oligomers will be reported in due course.
(14) Fradin, C.; Jovanlt, T.; Mallet, A.; Mallet, J. M.; Camas, D.;
Sinay, P.; Poulain, D. J. J. Leukocyte Biol. 1996, 60, 81.
(15) Boren, H. B.; Ekborg, G.; Iklind, K.; Garegg, P. J.; Pilotti,
A.; Swan, C. G. Acta Chem. Scand. 1973, 27, 2639.
(16) (a) Crich, D.; Sun, S. J. Am. Chem. Soc. 1997, 119, 11217.
(b) Crich, D.; Li, H.; Yao, Q.; Wink, D. J.; Sommer, R. D.;
Rheingold, A. L. J. Am. Chem. Soc. 2001, 123, 5826.
(17) Jayaprakash, K. N.; Radhakrishnan, K. V.; Schlueter, U.;
Fraser-Reid, B. Tetrahedron Lett. 2002, 43, 6953.
(18) Wang, Z.-G.; Zhang, X.; Visser, M.; Live, D.; Zatorsky, A.
M.; Iserloh, U.; Lloyd, K. O.; Danishefsky, S. J. Angew.
Chem. Int. Ed. 2001, 40, 1728.
(19) Typical procedure for preparation of 9 by reaction of 15a
with 1: The acceptor, trisaccharide 15a (n = 1, 1.40 g, 1
mmol) and the donor (1, 4.36 g, 7 mmol) were separately
rotovaporised twice with dry toluene, and then dried for 8 h
under vacuum (0.5 mm Hg). To a solution of the acceptor in
15 mL of dry CH2Cl2 were added freshly activated molecular
sieves (4 g, 3 A beads, 8–12 mesh), NIS re-crystallized from
hot CH2Cl2 and cold hexane and dried under vacuum (0.5
mm Hg, over night, 1.35 g, 6 mmol) followed by
TBDMSOTf (0.1 mL, 0.4 mmol) at 10 ºC (ice bath). To this
solution was added a solution of NPOE in CH2Cl2 drop-wise
over 10 min, and then the ice bath was removed. After 10
In summary, once compounds 1 and 5 are in hand, one cy-
cle of the protocol shown in Scheme 2 can be accom-
plished in 2–3 days, allowing for rigorous characterization
of each intermediate. The data in Scheme 2 show that ex-
cellent yields are maintained as the array is lengthened.
Accordingly, the 9–16-mers of b-1,2-oligomannans,
which occur in the cell wall of C. albicans should be ob-
tainable by this iterative procedure.
Acknowledgement
We are grateful to the Public Health Service (RO1 AI43997) for
support.
Synlett 2003, No. 9, 1319–1322 ISSN 1234-567-89 © Thieme Stuttgart · New York