C. Bijani et al. / Tetrahedron Letters 43 (2002) 3765–3767
3767
ing the RGD sequence designed to increase the avb3
on a Waters Millennium with a photodiode array detec-
tor 996, wavelength 214 nm, using as a reversed phase
Nucleosil C18 column, 5m, (250×10 mm) with a flow rate
of 1 ml/min, eluants (solvent A: 0.1% TFA in H2O,
solvent B: 0.1% TFA in CH3CN).
binding inhibitor activity.
Acknowledgements
Butenoyl-L-Arg(Ts)-Gly-L-Asp(Cy)-D-PheNH-Allyl: Rf 0.5
(EtOAc 100%). 1H NMR (CD3OD) l 1.25–1.90 (m,
16H), 2.40 (s, 3H), 2.60–2.80 (m, 2H), 2.85–3.10 (m, 3H),
3.10–3.35 (m, 8H), 3.80 (d, J=5.0 Hz, 2H), 3.85 (s, 3H),
4.25 (t, 1H), 4.50–4.60 (m, 1H), 4.70 (t, J=46.0 Hz, 3H),
5.0–5.30 (m, 5H), 5.65–4.05 (m, 2H), 7.15–7.40 (m, 5H),
7.70–7.80 (d, J=9.0 Hz, 2H). 13C NMR (CD3OD) l
20.41, 23.20, 23.70, 25.40, 28.60, 29.67, 31.45, 31.50,
36.21, 37.60, 40.48, 41.76, 43.00, 50.14, 54.24, 55.80,
73.65, 115.25, 117.91, 126.13, 126.77, 128.51, 129.30,
129.32, 131.70, 134.12, 137.65, 141.16, 142.55, 157.65,
170.61 (2C), 171.61, 172.12, 173.47, 174.31. ESI-MS
837.4 (M+H+). HRMS calcd 837.3970, found 837.3969.
HPLC 12.07 min. IR cm−1 1130.7, 1253.2, 1450.4, 1542.0,
1638.6, 1720.2, 2931.8, 3290.8.
We thank the MENRT and the CNRS for financial
support.
References
1. Scott, C. P.; Abel-Santos, E.; Wall, M.; Wahnon, D. C.;
Benkovic, S. J. Proc. Natl. Acad. Sci. USA 1999, 96,
13638.
2. Gudmundsson, O. S.; Nimkar, K.; Gangwar, S.; Siahaan,
T.; Borchardt, R. T. Pharm. Res. 1999, 16, 16.
3. (a) Kessler, H. Angew. Chem., Int. Ed. Engl. 1982, 21,
512; (b) Haubner, R.; Finsinger, D.; Kessler, H. Angew.
Chem., Int. Ed. Engl. 1997, 36, 1374.
cyclo-(L-Arg(Ts)-Gly-L-Asp(Cy)-D-Phe-cis-Apa): Linear
4. Kasher, R.; Oren, D. A.; Barda, Y.; Gilon, C. J. J. Mol.
peptide (270 mg, 0.32 mmol) was dissolved in THF (160
ml) then Grubbs’ catalyst II (55 mg, 6.4.10−2 mmol) was
added to the solution. The mixture was stirred at reflux
overnight. THF was evaporated and residue was purified
over preparative HPLC to yield the title compound
Biol. 1999, 292, 421.
5. Brugghe, H. F.; Timmermans, H. A.; Van Unen, L. M.;
Ten Hove, G. J.; Van De Verken, G.; Poolman, J. T.;
Hoogerhout, P. Int. J. Pept. Protein Res. 1994, 43, 166.
6. Mezo, G.; Majer, Z.; Valero, M. L.; Andreu, D.; Hudecz,
F. J. Pept. Sci. 1999, 5, 272.
7. Peishoff, C. E.; Ali, F. E.; Bean, J. W.; Calvo, R.;
D’Ambrosio, C. A.; Eggleston, D. S.; Hwang, S. M.;
Kline, T. P.; Koster, P. F.; Nichols, A.; Powers, D.;
Romoff, T.; Samanen, J. M.; Stadel, J.; Vasko, J. A.;
Kopple, K. D. J. Med. Chem. 1992, 35, 3962.
8. Schiller, P. W.; Nguyen, T. M.-D.; Lemieux, C.; Maziak,
L. A. J. Med. Chem. 1985, 28, 1766.
9. Charpentier, B.; Dor, A.; Roy, P.; England, P.; Pham,
H.; Durieux, C.; Roques, B. P. J. Med. Chem. 1989, 32,
1184.
10. Holzemann, G.; Jonczyk, A.; Eiermann, V.; Pachler, K.
G. R.; Barnickel, G.; Regoli, D. Biopolymers 1991, 31,
691.
11. Trnka, T. N.; Grubbs, R. H. Acc. Chem. Res. 2001, 34,
18.
12. Miller, S. J.; Blakwell, H. E.; Grubbs, R. H. J. Am.
Chem. Soc. 1996, 118, 9606.
13. (a) Hann, M. M.; Sammes, P. G.; Kennewell, P. D.;
Taylor, J. B. J. Chem. Soc., Perkin 1 1982, 307; (b) Hann,
M. M.; Sammes, P. G.; Kennewell, P. D.; Taylor, J. B. J.
Chem. Soc., Chem. Commun. 1980, 234.
1
(60%). H NMR (CD3OD) l 1.25–1.95 (m, 15H), 2.40 (s,
3H), 2.50–2.55 (m, 1H), 2.80–2.95 (m, 2H), 3.10 (q,
J=6.5 Hz, 1H), 3.15–3.25 (sl, 2H), 3.35 (dd, J=4.5 Hz,
J=14.0 Hz, 1H), 3.80–3.95 (m, 4H), 4.35 (q, J=4.5 Hz,
1H), 4.45 (t, J=6.5 Hz, 1H), 4.60 (dd, J=4.5 Hz, J=10.5
Hz, 1H), 4.65–4.75 (m, 1H), 5.65–5.85 (m, 2H), 7.20–7.35
(m, 7H), 7.75 (d, J=8.5 Hz, 2H). 13C NMR (CD3OD) l
20.42, 23.66, 25.40, 27.96, 31.45, 35.29, 36.74, 39.75,
41.34, 41.99, 51.49. 53.43, 55.00, 73.60, 125.74, 126.16,
126.75, 128.49, 129.11, 129.26, 129.34, 137.93, 169.96,
170.14, 171.93, 172.15, 172.69, 173.15. HPLC 11.175 min.
HRMS calcd 809.3665, found 809.3665.
cyclo-(L-Arg-Gly-L-Asp-D-Phe-cis-Apa): Cyclic peptide
(0.040 g, 0.049 mmol) was added to a solution of anhy-
dric fluorhydric acid at 0°C for 1 h in the presence of
anisole. The mixture was heated to 20°C and HF was
evaporated. The residue was precipitated in ether then
purified over preparative HPLC to yield 0.020 g (60%) of
1
the title compound. H NMR (DMSO-d6) l 1.15 (sl, 1H),
1.30–1.50 (m, 4H), 1.75 (sl, 1H), 2.20–2.30 (m, 2H),
2.60–2.75 (m, 2H), 2.90–3.10 (m, 3H), 3.60–3.80 (m, 4H),
4.00–4.10 (m, 1H), 4.10–4.20 (m, 1H), 4.25–4.35 (m, 1H),
5.50–5.70 (m, 2H), 7.05–7.20 (m, 5H), 7.35 (sl, 1H), 7.40
(sl, 1H), 8.25 (d, J=8.5 Hz, 1H), 8.40 (d, J=9.0 Hz, 1H),
8.65 (d, J=5.0 Hz, 1H), 12.35 (sl, 1H). 13C NMR
(DMSO-d6) l 26.16, 28.61, 35.85, 37.03, 41.73, 42.34,
51.87, 52.99, 54.75, 126.87, 127.03, 128.94, 129.53, 139.33,
157.51, 170.02, 171.07, 171.29, 171.79. ESI-MS m/z 573.2
(M+H+). HRMS calcd for C26H37O7N8 573.2785, found
573.2778. HPLC 7.312 min.
14. Hynes, R. O. Cell 1992, 69, 11.
15. Arnaout, M. A. Immunol. Rev. 1990, 114.
16. Marsella, M. J.; Maynard, H. D.; Grubbs, R. H. Angew.
Chem., Int. Ed. Engl. 1997, 36, 1101.
17. Conde-Frieboes, K.; Andersen, S.; Breinholt, J. Tetra-
hedron Lett. 2000, 41, 9153.
18. Varray, S.; Gauzy, C.; Lamaty, F.; Lazaro, R.; Martinez,
J. J. Org. Chem. 2000, 65, 6787 and references cited
therein.
20. Pe`pe, G.; Siri, D. Stud. Phys. Theor. Chem. 1990, 71, 93.
21. Morel-Kopp, M. C.; Melchior, C.; Chen, P.; Ammerlaan,
W.; Lecompte, T.; Kaplan, C.; Kieffer, N. Thromb.
Haemost. 2001, 86, 1425.
1
19. All new compounds gave satisfactory analytical data: H
and 13C NMR analyses were performed with a 400 MHz
NMR spectrometer. The HPLC analyses were carried out