indole derivatives through 1,5-dipolar cyclization or 6π
electrocyclization.
Scheme 2
Moreover, our strategy can be expanded to the generation
of 1,5-dipoles from o-metallomethylated phenyl isothiocy-
anates (Scheme 1B).
Herein we report on the generation of 1,5-dipoles from
o-metallomethylated anilide and isothiocyanate derivatives
via 1,6-metallatropy and cyclization of the 1,5-dipoles leading
to indole derivatives. Various biologically active compounds
having indole rings are found in nature, and the indole
derivatives are important key compounds for the synthesis
of a variety of natural products, pharmacologically interesting
compounds,5 and various functional materials.5a
Our first investigation was to observe the behavior of
o-metallomethylated anilides under thermal conditions.
When benzene solutions of o-silylmethylated anilides or
o-silylmethylated thioanilides were heated in sealed tubes,
the reactions did not proceed at all even at 200 °C. Our
preliminary experiments clarified the tendency toward the
migration of the metallo groups as Sn > Si, where a larger
affinity between tin and sulfur was observed. These facts
encouraged us to study the thermal reaction of o-stannyl-
methylated thioanilides. Thus, we successfully found that
heating a benzene solution of thioanilide 1a at 110 °C
for 30 h gave 2,3-diphenylindole 2a in high yield
(Scheme 2).
clization of the 1,5-dipole, and (3) elimination of tributyl-
stannanethiol causing aromatization.6
With an acceptable result for the formation of an indole
from o-stannylmethylated thioanilide 1a in hand, the versatile
method was extended to the synthesis of a variety of
thioanilides 1b-h (Table 1).
Table 1. Synthesis of Indole Derivatives from
o-Stannylmethylated Thioanilides via 1,6-Stannatropy
Indole 2a might be formed via (1) the generation of a 1,5-
dipolar intermediate from thioanilide 1a by thermal 1,6-
migration of the tin atom (1,6-stannatropy), (2) electrocy-
(1) (a) Taylor, E. C.; Turchi, I. J. Chem. ReV. 1979, 79, 181-231. (b)
Huisgen, R. Angew. Chem., Int. Ed. Engl. 1980, 19, 947-1034. (c) Grigg,
R.; Gunaratne, H. Q. N.; Henderson, D.; Sridharan, V. Tetrahedron 1990,
46, 1599-1610. (d) Ohno, M.; Miyata, H.; Komatsu, M.; Ohshiro, Y.
Tetrahedron Lett. 1991, 32, 5093-5096. (e) Grigg, R.; Myers, P.;
Somasunderan, A.; Sridharan, V. Tetrahedron 1992, 48, 9735-9744. (f)
Grigg, R.; Kennewell, P.; Savic, V.; Sridharan, V. Tetrahedron 1992, 48,
10423-10430. (g) Gupton, J. T.; Petrich, S. A.; Smith, L. L.; Bruce, M.
A.; Vu, P.; Du, K. X.; Dueno, E. E.; Jones, C. R.; Sikorski, J. A. Tetrahedron
1996, 52, 6879-6892. (h) Gupton, J. T.; Krumpe, K. E.; Bumham, B. S.;
Dwornik, K. A.; Petrich, S. A.; Du, K. X.; Bruce, M. A; Vu, P.; Vargas,
M.; Keertikar, K. M.; Hosein, K. N.; Jones, J. A. Tetrahedron 1998, 54,
5075-5088. (i) Butler, R. N.; Farrell, D. M. J. Chem. Res., Synop. 1998,
82-83. (j) Friebolin, W.; Eberbach, W. Tetrahedron 2001, 57, 4349-4358.
(k) Friebolin, W.; Eberbach, W. HelV. Chim. Acta 2001, 84, 3822-3836.
(l) Epperson, M. T.; Gin, D. Y. Angew. Chem., Int. Ed. 2002, 41, 1778-
1780. (m) McNab, H.; Morrow, M. ARKIVOC 2002, VIII, 125-133. (n)
Doyle, M. P.; Yan, M.; Hu, W.; Gronenberg, L. S. J. Am. Chem. Soc. 2003,
125, 4692-4693. (o) Noguchi, M.; Shirai, M.; Nakashima, K.; Arai, I.;
Nishida, A.; Yamamoto, H.; Kakehi, A. Tetrahedron 2003, 59, 4581-4590.
(p) Nyerges, M.; Pinte´r, AÄ .; Vira´nyi, A.; Blasko´, G.; To¨ke, L. Tetrahedron
2005, 61, 8199-8205. (q) Nyerges, M.; To¨ke, L. Tetrahedron Lett. 2005,
46, 7531-7534.
temp time
yield
entry substr.
R1
R2
(°C)
(h) product (%)
1
2
3
4
5
6
7
1b
1c
1d
1e
1f
1g
1h
4-MeOC6H4 Ph
4-CF3C6H4 Ph
styryl
Ph
110
110
110
45
15
5
12
9
12
96
2b
2c
2d
2e
2f
2g
2h
84
70
48
82
50
55
58
Ph
4-ClC6H4 110
H
Me
Ph
Ph
Ph
H
200
200
200
The reaction of thioanilide 1b, having an electron-donating
group on the thiocarbonyl aromatic ring, afforded indole
derivative 2b in high yield (entry 1). In contrast, the
introduction of an electron-withdrawing group at the same
position accelerated the reaction extensively (entry 2). In the
case of thioanilide 1d, having a styryl group, the reaction
also proceeded smoothly to give the corresponding indole
2d (entry 3). A chloro-substituted phenyl group as R2 might
have contributed to the stabilization of the dipolar intermedi-
ate, leading to indole 2e (entry 4). As shown in entries 5-7,
the generation of less-stabilized 1,5-dipoles from 1f-h (R1
) H, Me or R2 ) H) could be realized to cyclize to the
(2) (a) Ried, W.; Dietrich, R. Liebigs Ann. Chem. 1964, 666, 113-135.
(b) Rothenberger, O. S.; Taylor, R. T.; Dalrymple, D. L.; Moore, J. A. J.
Org. Chem. 1972, 37, 2640-2642. (c) Hiyama, T.; Taguchi, H.; Nozaki,
H. Bull. Chem. Soc. Jpn. 1974, 47, 2909-2910. (d) Crabb, J. N.; Storr, R.
C. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; John Wiley
and Sons: New York, 1984; Vol. 2, pp 554-558.
(3) Pohjala, E. Tetrahedron Lett. 1972, 13, 2585-2588.
(4) (a) Ohno, M.; Komatsu, M.; Miyata, H.; Ohshiro, Y. Tetrahedron
Lett. 1991, 32, 5813-5816. (b) Iyoda, M.; Sultana, F.; Komatsu, M. Chem.
Lett. 1995, 1133-1134. (c) Komatsu, M.; Kasano, Y.; Yonemori, J.-I.;
Oderaotoshi, Y.; Minakata, S. Chem. Commun. 2006, 5, 526-528.
(5) (a) Gribble, G. G. In ComprehensiVe Heterocyclic Chemistry II;
Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Bird, C. W., Eds.; Elsevier
Science: Oxford, 1996; Vol. 2, pp 207-257. (b) Gossauer, A. In Progress
in the Chemistry of Organic Natural Products; Herz, W., Falk, H., Kirby,
G. W., Eds.; Springer: Wien; 2003, Vol. 86, pp 1-188. (c) Somei, M.;
Yamada, F. Nat. Prod. Rep. 2005, 22, 73-103.
(6) Because initial reaction rates of the reactions at different initial
concentrations are the same, the migration of the stannyl group of
thioanilides 1 should occur intramolecularly. See Supporting Information
data.
3694
Org. Lett., Vol. 8, No. 17, 2006