LETTER
Solid-phase Oligosaccharides Synthesis Using Alkyne Linkers
1415
(13) (a) Egusa, K.; Kusumoto, S.; Fukase, K. Synlett 2001, 777.
(b) Egusa, K.; Fukase, K.; Nakai, Y.; Kusumoto, S. Synlett
2000, 27. (c) Fukase, K.; Nakai, Y.; Egusa, K.; Porco, J. A.
Jr.; Kusumoto, S. Synlett 1999, 1074.
(14) Fukase, Y.; Fukase, K.; Kusumoto, S. Tetrahedron Lett.
1999, 40, 1169.
References
(1) (a) Fukase, K. In Glycoscience, Vol. II; Fraser-Reid, B.;
Tatsuta, K.; Thiem, J., Eds.; Springer Verlag: Berlin-
Heidelberg-New York, 2001, 1621. (b) Seeberger, P. H.;
Haase, W.-C. Chem. Rev. 2000, 100, 4349. (c) Ito, Y.;
Manabe, S. Curr. Opin. Chem. Biol. 1998, 6, 701.
(d) Osborn, H. M. I.; Khan, T. H. Tetrahedron 1999, 55,
1807.
(2) (a) Danishefsky, S. J.; McClure, K. F.; Randolph, J. T.;
Ruggeri, R. B. Science 1993, 260, 1307. (b) Randolph, J.
T.; McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc.
1995, 117, 5712. (c) Randolph, J. T.; Danishefsky, S. J.
Angew. Chem., Int. Ed. Engl. 1994, 33, 1470. (d)Zheng, C.;
Seeberger, P. H.; Danishefsky, S. J. Angew. Chem. Int. Ed.
1998, 37, 786. (e) Roberge, J. Y.; Beebe, X. X.;
Danishefsky, S. J. Science 1995, 269, 202. (f) Roberge, J.
Y.; Beebe, X. X.; Danishefsky, S. J. J. Am. Chem. Soc. 1998,
120, 3915.
(3) (a) Doi, T.; Sugiki, M.; Yamada, H.; Takahashi, T.; Porco, J.
A. Jr. Tetrahedron Lett. 1999, 40, 2141. (b) Takahashi, T.;
Inoue, H.; Yamamura, Y.; Doi, T. Angew. Chem. Int. Ed.
2001, 40, 3230. (c) Takahashi, T.; Okano, A.; Amaya, T.;
Tanaka, H.; Doi, T. Synlett 2002, 911.
(4) (a) Yan, L.; Taylor, C. M.; Goodnow, R. Jr.; Kahne, D. J.
Am. Chem. Soc. 1994, 116, 6953. (b) Liang, R.; Yan, L.;
Loebach, J.; Ge, M.; Uozumi, Y.; Sekanina, K.; Horan, N.;
Gildersleeve, J.; Thompson, C.; Smith, A.; Biswas, K.; Still,
W. C.; Kahne, D. Science 1996, 274, 1520.
(15) Izumi, M.; Fukase, K.; Kusumoto, S. Biosci. Biotechnol.
Biochem. 2002, 66, 211.
(16) Sonogashira coupling on solid support: (a) Park, C.;
Burgess, K. J. Comb. Chem. 2001, 3, 257. (b) Liao, Y.;
Fathi, R.; Reitman, M.; Zhang, Y.; Yang, Z. Tetrahedron
Lett. 2001, 42, 1815. (c) Pattarawarapan, M.; Burgess, K.
Angew. Chem. Int. Ed. 2000, 39, 4299. (d) Dyatkin, A. B.;
Rivero, R. A. Tetrahedron Lett. 1998, 39, 3647. (e) Tan, D.
S.; Foley, M. A.; Shair, M. D.; Schreiber, S. L. J. Am. Chem.
Soc. 1998, 120, 8565.
(17) Commercially available from Mimotopes Pty. Ltd. (http://
synthesis on SynPhase Crown see ref.3b and ref.7
(18) 3: Mp: 98 °C; [ ]D22 = +13 (c 1.10, CHCl3); ESI-Mass
(positive) m/z 509.3 [(M + Na)+]; 1H NMR (CDCl3)
=
7.48–7.24 (15 H, m, PhCH 3), 5.54 (1 H, s, PhCH), 5.05 (1
H, d, J = 3.0 Hz, H-1), 4.93–4.73 (4 H, m, PhCH2 2), 4.51
(1 H, t, J = 9.0 Hz, H-3), 4.30 (2 H, d, J = 3.0 Hz, OCH2-
CCH), 4.26 (1 H, dd, J = 10.4, 5.2 Hz, H-6a), 3.88–3.86 (1
H, m, H-5), 3.75–3.72 (2 H, m, H-2 and H-4), 3.62 (1 H, d,
J = 5.2 Hz, H-6b), 2.47 (1 H, t, J = 3.0 Hz, OCH2-CCH).
Found: C, 73.79; H, 6.11%. Calcd for C30H30O6: C, 74.06; H,
6.21%.
(19) 5: Mp: 162 °C; [ ]D22 = +37 (c 1.00, CHCl3); ESI-Mass
(positive) m/z 629.3 [(M + Na)+]; 1H NMR (CDCl3) = 8.00
(2 H, m, CC6H4CO2Me), 7.50–7.21 (17 H, m, PhCH 3 +
CC6H4CO2Me), 5.56 (1 H, s, PhCH), 5.10 (1 H, d, J = 3.6
Hz, H-1), 4.93–4.73 (4 H, m, PhCH2 2), 4.54 (2 , d, J = 3.0
Hz, OCH2-CCH), 4.26 (1 H, dd, J = 10.3, 4.9 Hz, H-6a), 4.09
(1 H, t, J = 9.1 Hz, H-3), 3.95–3.92 (1 H, m, H-5), 3.92 (3 H,
s, CC6H4CO2Me), 3.71 (1 H, d, J = 10.3 Hz, H-6b), 3.65–
3.61 (2 H, m, H-2 and H-4). Found: C, 72.92; H, 5.75%.
Calcd for C38H36O8 1/2H2O: C, 72.48; H, 5.92%.
(5) (a) Rademann, J.; Schmidt, R. R. Tetrahedron Lett. 1996, 37,
3989. (b) Rademann, J.; Schmidt, R. R. J. Org. Chem. 1997,
62, 3650. (c) Rademann, J.; Geyer, A.; Schmidt, R. R.
Angew. Chem., Int. Ed. Engl. 1988, 37, 1241. (d) Knerr, L.;
Schmidt, R. R. Eur. J. Org. Chem. 2000, 2803. (e) Roussel,
F.; Knerr, L.; Grathwohl, M.; Schmidt, R. R. Org. Lett. 2000,
2, 3043. (f) Roussel, F.; Knerr, L.; Schmidt, R. R. . Eur. J.
Org. Chem. 2001, 2067. (g) Roussel, F.; Takhi, M.;
Schmidt, R. R. J. Org. Chem. 2001, 66, 8540.
(6) (a) Shimizu, H.; Ito, Y.; Kanie, O.; Ogawa, T. Bioorg. Med.
Chem. Lett. 1996, 6, 2841. (b) Manabe, S.; Nakahara, Y.;
Ito, Y. Synlett 2000, 1241. (c) Manabe, S.; Ito, Y. Chem.
Pharm. Bull. 2001, 49, 1234.
(7) Rodebaugh, R.; Joshi, S.; Fraser–Reid, B.; Geysen, H. M. J.
Org. Chem. 1997, 62, 5660.
(8) (a) Nicolaou, K. C.; Winssinger, N.; Pastor, J.; Deroose, F.
J. Am. Chem. Soc. 1997, 119, 449. (b) Nicolaou, K. C.;
Watanabe, N.; Li, J.; Pastor, J.; Winssinger, N. Angew.
Chem. Int. Ed. 1998, 37, 1559.
(9) (a) Kanemitsu, T.; Kanie, O.; Wong, C.-H. Angew. Chem.
Int. Ed. 1998, 37, 3415. (b) Kanemitsu, T.; Wong, C.-H.;
Kanie, O. J. Am. Chem. Soc. 2002, 124, 3591.
(10) (a) Melean, L. G.; Haase, W.-C.; Seeberger, P. H.
Tetrahedron Lett. 2000, 41, 4329. (b) Plante, O. J.;
Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.
(c) Plante, O. J.; Palmacci, E. R.; Andrade, R. B.; Seeberger,
P. H. J. Am. Chem. Soc. 2001, 123, 9545. (d) Palmacci, E.
R.; Plante, O. J.; Seeberger, P. H. Eur. J. Org. Chem. 2002,
595.
(20) 6: ESI-Mass (negative) m/z 605.2 [(M – H)–]; 1H NMR
(CDCl3) = 8.00 (2 H, m, CC6H4CO2H), 7.50–7.21 (17 H,
m, PhCH 3 + CC6H4CO2H), 5.56 (1 H, s, PhCH), 5.10 (1
H, d, J = 3.6 Hz, H-1), 4.93–4.73 (4 H, m, PhCH2 2), 4.54
(2 H, d, J = 3.0 Hz, OCH2-CCH), 4.26 (1 H, dd, J = 10.3, 4.9
Hz, H-6a), 4.09 (1 H, t, J = 9.1 Hz, H-3), 3.95–3.92 (1 H, m,
H-5), 3.71 (1 H, d, J = 10.3 Hz, H-6b), 3.65–3.61 (2 H, m,
H-2 and H-4). Found: C, 72.24; H, 5.78%. Calcd for
C37H34O8 1/2H2O: C, 72.18; H, 5.73%. A typical procedure
for introduction of a monosaccharide 6 on solid support.
ArgoPore resin (NH2-LL: 0.28 mmol/g) (100mg, 28.0 mol)
was placed in a polypropylene tube (Varian) fitted with a
filter, and washed with 5% diisopropylamine in CH2Cl2 and
then CH2Cl2. Compound 6 (38.9 mg, 56.0 mol), HOBt
(18.9 mg, 140 mol), CH2Cl2 (3.0 mL), and DIC (8.8 L,
56.0 mol) were added to the tube, successively. The
reaction mixture was shaken for 3 d with Rotator RT-50
(Taitech) and filtered. The resin was washed with CH2Cl2
and the residual amino groups on the resin were then capped
with acetic anhydride (1.0 mL) and triethylamine (1.0 mL)
in CH2Cl2 (2.0 mL) by shaking for 30 min. The resin was
washed successively with DMF, MeOH, and CH2Cl2.
(21) A typical procedure for introduction of 4-iodobenzoic acid 8
on solid support. SynPhaseTM resin (NH2-HL: 35.0 mol)
was placed in a polypropylene tube (Varian) fitted with a
filter, and washed with 5% diisopropylamine in CH2Cl2 and
then CH2Cl2. Compound 8 (17.4 mg, 70.0 mol), HOBt
(23.6 mg, 175 mol), CH2Cl2 (3.0 mL), and DIC (11.0 L,
(11) Belogi, G.; Zhu, T.; Boons, G.-J. Tetrahedron Lett. 2000, 41,
6969.
(12) Commercially available from Argonaut Technologies, San
index.htm). For investigations of other highly crosslinked
macroporous resins, see: Hori, M.; Gravert, D. J.;
Wentworth, P. Jr.; Janda, K. D. Bioorganic Med. Chem. Lett.
1998, 8, 2363.
Synlett 2002, No. 9, 1409–1416 ISSN 0936-5214 © Thieme Stuttgart · New York