Wnuk et al.
J ) 7.6 Hz, 2H), 8.16 (s, 1H), 8.40 (s, 1H); 19F NMR δ -199.19
(dt, J ) 18.0, 51.0 Hz).
from tributyltin hydride to fluoropentofuranosyl radicals
generated from these adenine nucleoside derivatives. In
all cases, deuterium abstraction occurs at the less
hindered R face of the sugar ring trans to the heterocyclic
base. However, this R face stereoselectivity is enhanced
by the anti effect of a vicinal fluorine substituent with
an arabino or xylo orientation (on the â face of the ring).
A smaller anti effect is still apparent with a vicinal
fluorine on the R face (ribo orientations). Complex stereo-
electronic/steric interactions might be involved with these
furanose rings that have electronegative (F, O, N) sub-
stituents.
5′-O-(ter t-Bu tyld im eth ylsilyl)-2′,3′-d id eoxy-3′(R/S)-d eu -
ter io-2′-flu or oa d en osin e (7). Procedure C. A solution of 5
(17 mg, 0.32 mmol), AIBN (1.2 mg, 0.007 mmol), and Bu3SnD
(17.4 µL, 18 mg, 0.064 mmol) in toluene (1 mL) was deoxy-
genated (Ar) for 30 min and then heated for 3 h at 85 °C.
Volatiles were evaporated, and the residue was chromato-
graphed (EtOAc) to give 7 (3′R/S, ∼64:36; 8.5 mg, 67%) with
data as reported10 except for the following: 1H NMR δ 2.23
(dd, J ) 5.1, 19.3 Hz, 0.36H), 2.49 (ddd, J ) 4.0, 10.7, 42.3
Hz, 0.64H), 4.60 (dt, J ) 2.6, 10.6 Hz, 1H), 5.42 (dd, J ) 3.7,
51.5 Hz, 1H), 6.33 (d, J ) 16.5 Hz, 1H); 19F NMR δ -181.04
(ddd, J ) 16.5, 42.0, 51.5 Hz); MS m/z 369 (MH+).
2′,3′-Did eoxy-3′(R/S)-d eu ter io-2′-flu or oa d en osin e (8).
Procedure D. NH4F (100 mg, 2.7 mmol) was added to a stirred
solution of 7 (3′R/S, ∼64:36; 15 mg, 0.04 mmol) in MeOH (2
mL), and stirring was continued for 26 h at reflux. Volatiles
were evaporated, and the residue was chromatograhed (5 f
10% MeOH/CHCl3) to give 8 (3′R/S, ∼64:36; 6 mg, 60%) with
data as reported9,10 except for the following: 1H NMR (MeOH-
d4) δ 2.30 (dd, J ) 5.4, 19.5 Hz, 0.36H), 2.53 (ddd, J ) 4.3,
9.7, 38.2 Hz, 0.64H), 4.53-4.57 (m, 1H), 5.52 (dd, J ) 4.2, 52.0
Hz, 1H), 6.30 (d, J ) 16.8 Hz, 1H); 19F NMR (MeOH-d4) δ
-182.62 (ddd, J ) 16.0, 38.0, 52.0 Hz); MS m/z 255 (MH+).
9-[5-O-(ter t-Bu tyldim eth ylsilyl)-2,3-dideoxy-3(R/S)-deu -
ter io-2-flu or o-â-D-th r eo-pen tofu r an osyl]aden in e (9). Treat-
ment of 6 (10 mg, 0.02 mmol) using procedure C gave 9 (3′R/
S, ∼93:7; 6.5 mg, 90%) with data as reported10 except for the
following: 1H NMR δ 2.46 (dd, J ) 3.4, 26.8 Hz, 0.93H), 2.58
(br d, J ) 30.0 Hz, 0.07H), 4.30 (“q”, J ) 5.1 Hz, 1H), 5.30 (dt,
J ) 2.6, 53.6 Hz, 1H), 6.34 (dd, J ) 3.2, 18.1 Hz, 1H); 19F NMR
δ -188.04 (dt, J ) 23.0, 53.0 Hz); MS m/z 369 (MH+). Our 1H
NMR spectrum of 9 is in agreement with that of 9-[5-O-
benzoyl-2,3-dideoxy-3(R/S)-deuterio-2-fluoro-â-D-threo-pento-
furanosyl]-6-methoxypurine (3′R/S, ∼89:11) obtained by deox-
ygenation of the 3′-xanthate with lauroyl peroxide/2-propanol-
d8.5
Exp er im en ta l Section
1H (Me4Si) (400 MHz) and 19F (CCl3F) (376.4 MHz) NMR
spectra were determined with solutions in CDCl3 unless
otherwise noted. Mass spectra (MS) were obtained by atmo-
spheric pressure chemical ionization (APCI) techniques. Re-
agent-grade chemicals were used, and solvents were dried by
reflux over and distillation from CaH2 under an argon atmo-
sphere. Merck kieselgel 60-F254 was used for TLC, and Merck
kieselgel 60 (230-400 mesh) was used for column chromatog-
raphy.
5′-O-(ter t-Bu t yld im et h ylsilyl)-2′-d eoxy-2′-flu or oa d e-
n osin e (2). Procedure A. TBDMS-Cl (63 mg, 0.44 mmol) and
imidazole (43 mg, 0.66 mmol) were added to 112a (59 mg, 0.22
mmol) in dried DMF (3 mL) at ambient temperature, and the
solution was stirred overnight. H2O (1.0 mL) was added;
volatiles were evaporated, and the residue was partitioned
(EtOAc//NH4Cl/H2O). The organic layer was washed (brine),
dried (Na2SO4), evaporated, and column chromatographed (5
f 10% MeOH/CHCl3) to give 2 (59 mg, 70%): 1H NMR δ 0.14
(s, 6H), 0.93 (s, 9H), 3.93 (dd, J ) 2.5, 11.7 Hz, 1H), 4.09 (dd,
J ) 2.4, 11.7 Hz, 1H), 4.19-4.25 (m, 1H), 4.72 (ddd, J ) 4.4,
6.5, 17.5 Hz, 1H), 5.45 (ddd, J ) 2.2, 4.2, 52.9 Hz, 1H), 6.02
(dd, J ) 2.2, 15.0 Hz, 1H), 6.28 (br s, 2H), 8.23 (s, 1H), 8.38 (s,
1H); 19F NMR δ -204.33 (dt, J ) 16.0, 53.0 Hz); MS m/z 384
(MH+). Anal. Calcd for C16H26FN5O3Si (383.5): C, 50.11; H,
6.83; N, 18.26. Found: C, 50.33; H, 6.99; N, 18.01.
9-[2,3-Dideoxy-3(R/S)-deu ter io-2-flu or o-â-D-th r eo-pen to-
fu r a n osyl]a d en in e (10). Treatment of 9 (3′R/ S, ∼93:7; 12.5
mg, 0.035 mmol) using procedure D gave 10 (3′R/S, ∼92:8; 5
mg, 60%) with data as reported9,10 except for the following:
1H NMR (MeOH-d4) δ 2.30 (“dt”, J ) 4.2, 27.2 Hz, 0.92H), 2.55
(“dt”, J ) 6.8, 31.0 Hz, 0.08H), 4.27 (“q”, J ) 5.2 Hz, 1H), 5.29
9-[5-O-(ter t-Bu t yld im et h ylsilyl)-2-d eoxy-2-flu or o-â-D-
a r a bin ofu r a n osyl]a d en in e (4). Treatment of 310,12a (40 mg,
0.15 mmol) using procedure A gave 410 (36.5 mg, 64%): 19F
NMR δ -198.02 (dt, J ) 17.0, 51.0 Hz).
(dt, J ) 2.7, 54.1 Hz, 1H), 6.26 (dd, J ) 3.5, 16.8 Hz, 1H); 19
F
NMR (MeOH-d4) δ -182.62 (ddd, J ) 17.0, 27.0, 54.0 Hz); MS
m/z 255 (MH+).
5′-O-(ter t-Bu t yld im et h ylsilyl)-2′-d eoxy-2′-flu or o-3′-O-
(p h en oxyth ioca r bon yl)a d en osin e (5). Procedure B. PTC-
Cl (21.5 µL, 27 mg, 0.15 mmol) was added dropwise to a stirred
solution of 2 (39 mg, 0.1 mmol) and DMAP (55 mg, 0.45 mmol)
in MeCN (3 mL). Stirring was continued for 5 h, and volatiles
were evaporated. The residue was partitioned (EtOAc/H2O),
and the organic layer was washed (0.1 M HCl/H2O, NaHCO3/
H2O, brine) and dried (Na2SO4). Volatiles were evaporated, and
the residue was chromatographed (30% hexanes/EtOAc f
EtOAc) to give 5 (35 mg, 66%): 1H NMR δ 0.15 (s, 6H), 0.95
(s, 9H), 3.98 (dd, J ) 2.0, 11.8 Hz, 1H), 4.11 (dd, J ) 1.8, 11.7
Hz, 1H), 4.59-4.63 (m, 1H), 5.77 (“dt”, J ) 3.9, 51.7 Hz, 1H),
5.90 (br s, 2H), 6.04 (“dt”, J ) 5.6, 13.1 Hz, 1H), 6.47 (dd, J )
3.2, 15.0 Hz, 1H), 7.15 (d, J ) 8.5 Hz, 2H), 7.35 (t, J ) 7.3 Hz,
1H), 7.47 (t, J ) 7.8 Hz, 2H), 8.20 (s, 1H), 8.39 (s, 1H); 19F
NMR δ -205.26 (dt, J ) 14.0, 51.0 Hz); MS m/z 520 (MH+).
Anal. Calcd for C23H30FN5O4SSi (519.7): C, 53.16; H, 5.82; N,
13.48. Found: C, 52.88; H, 5.61; N, 13.77.
9-[5-O-(ter t-Bu tyld im eth ylsilyl)-2-d eoxy-2-flu or o-3-O-
(ph en oxyth iocar bon yl)-â-D-ar abin ofu r an osyl]aden in e (6).
Treatment of 4 (36 mg, 0.094 mmol) using procedure B gave
610 (28 mg, 57%): 1H NMR δ 0.15 (s, 6H), 0.96 (s, 9H), 3.95
(dd, J ) 4.7, 11.0 Hz, 1H), 4.02 (dd, J ) 4.8, 10.7 Hz, 1H),
4.39-4.44 (m, 1H), 5.57 (dd, J ) 2.8, 49.6 Hz, 1H), 6.01 (dd, J
) 2.6, 15.6 Hz, 1H), 5.73 (br s, 2H), 6.59 (dd, J ) 2.6, 22.0 Hz,
1H), 7.16 (d, J ) 7.6 Hz, 2H), 7.36 (t, J ) 7.3 Hz, 1H), 7.47 (t,
5′-O-(ter t-Bu t yld im et h ylsilyl)-3′-d eoxy-3′-flu or oa d e-
n osin e (12). Treatment of 1117 (80 mg, 0.3 mmol) using
procedure A gave 12 (76 mg, 67%): 1H NMR δ -0.02 (s, 3H),
0.04 (s, 3H), 0.79 (s, 9H), 3.83-3.87 (m, 2H), 4.58 (dt, J ) 2.8,
26.4 Hz, 1H), 4.74 (ddd, J ) 4.5, 7.0, 24.7 Hz, 1H), 5.19 (dd, J
) 4.4, 54.5 Hz, 1H), 5.86 (br s, 2H), 6.02 (d, J ) 7.2 Hz, 1H),
8.08 (s, 1H), 8.33 (s, 1H); 19F NMR δ -199.45 (dt, J ) 26.0,
54.0 Hz); MS m/z 384 (MH+). Anal. Calcd for C16H26FN5O3Si
(383.5): C, 50.11; H, 6.83; N, 18.26. Found: C, 49.89; H, 6.99;
N, 18.03.
9-[5-O-(ter t-Bu t yld im et h ylsilyl)-3-d eoxy-3-flu or o-â-D-
xylofu r a n osyl]a d en in e (14). Treatment of 1318 (45 mg, 0.17
mmol) using procedure A gave 14 (44.5 mg, 69%): 1H NMR δ
0.11 (s, 6H), 0.91 (s, 9H), 4.03 (dd, J ) 6.1, 10.2 Hz, 1H), 4.08
(dd, J ) 6.4, 10.5 Hz, 1H), 4.56 (dtd, J ) 3.3, 5.9, 26.8 Hz,
1H), 4.66 (dt, J ) 1.7, 15.4 Hz, 1H), 5.16 (ddd, J ) 2.0, 2.9,
51.2 Hz, 1H), 5.93 (br s, 2H), 6.01 (d, J ) 1.5 Hz, 1H), 7.99 (s,
1H), 8.31 (s, 1H); 19F NMR δ -203.72 (ddd, J ) 16.0, 26.0,
50.0 Hz); MS m/z 384 (MH+). Anal. Calcd for C16H26FN5O3Si
(383.5): C, 50.11; H, 6.83; N, 18.26. Found: C, 50.01; H, 6.72;
N, 18.08.
(17) Battistini, C.; Giordani, A.; Ermoli, A.; Franceschi, G. Synthesis
1990, 900-905.
(18) Robins, M. J .; Fouron, Y.; Mengel, R. J . Org. Chem. 1974, 39,
1564-1570.
8796 J . Org. Chem., Vol. 67, No. 25, 2002