Communications
molecular sieves and distilled over CaH2 prior to use. When required,
solvents were deoxygenated by freeze/pump/thaw cycles. Deuterated
solvents were purchased fromCambridge Isotopes and used without
further purification. All other solvents and reagents were of reagent
grade and used as received. The syntheses of H3(tpfc),[28,29] [Mn-
(tpfc)],[30] [Cr(tpfc)(py2)],[31] [Mn(tpfc)(NMes)][9] (Mes = 2,4,6-
(CH3)3C6H2), [Mn(tpfc)(NAr)][9] (Ar= 2,4,6-Cl3C6H2), [Mn(tpfc)-
(NAr’)][10] (Ar’ = 2,6-Cl2C6H3), [Cr(tpfc)(NMes)],[10] and [Cr(tpfc)-
(NAr)][10] followed previously described methods. All azides were
prepared by using the Sandmeyer reaction or slight variations
thereof.[7,8] Azo compounds were compared to authentic samples.
Photolysis experiments were carried out with a Hanovia Model 673A-
0360 550 W medium-pressure mercury arc lamp. Rate measurements
were carried out by conventional UV/Vis spectroscopy on a Shimadzu
UV-2501 spectrophotometer equipped with a temperature-controlled
cell holder. Formation of [MnV(NMes)(tpfc)] was monitored at
536 nm, c[Mn(tpfc)] = 15 or 30 mm, and cMesN = 2.0–12.0 mm at (80 ꢁ
3
0.2)8C.
Received: November 17, 2004
Revised: June 13, 2005
Published online: August 29, 2005
Keywords: azides · imido ligands · kinetics ·
.
macrocyclic ligands · manganese
[1] H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. 2001, 113,
2056; Angew. Chem. Int. Ed. 2001, 40, 2004.
[2] R. Huisgen, J. Sauer, H. J. Sturm, J. H. Markgraf, Chem. Ber.
1960, 93, 2106.
[3] Z. P. Demko, K. B. Sharpless, Angew. Chem. 2002, 114, 2117;
Angew. Chem. Int. Ed. 2002, 41, 2113
[4] Z. P. Demko, K. B. Sharpless, Angew. Chem. 2002, 114, 2114;
Angew. Chem. Int. Ed. 2002, 41, 2110.
Figure 3. A) Time profiles simulated by the program KINSIM for the
reaction of [MnIII(tpfc)] with mesityl azide according to Scheme 2. Sim-
ulation conditions: c[MnIII(tpfc)] =15 mm, cMesN =5.3 mm,
3
k1 =8.3ꢀ10ꢀ7 sꢀ1, kisc =2.0ꢀ107 sꢀ1 [27] kr =1.0ꢀ1010 sꢀ1
,
,
[5] R. A. Eikey, M. M. Abu-Omar, Coord. Chem. Rev. 2003, 243, 83.
[6] D. E. Wigley, Prog. Inorg. Chem. 1994, 42, 239.
[7] S. Murata, S. Abe, H. Tomioka, J. Org. Chem. 1997, 62, 3055.
[8] E. Leyva, D. Munoz, M. S. Platz, J. Org. Chem. 1989, 54, 5983.
[9] R. A. Eikey, S. I. Khan, M. M. Abu-Omar, Angew. Chem. 2002,
114, 3743; Angew. Chem. Int. Ed. 2002, 41, 3591.
[10] N. Y. Edwards, R. A. Eikey, M. I. Loring, M. M. Abu-Omar,
Inorg. Chem. 2005, 44, 3700 – 3708.
[11] G. LaMonica, S. Cenini, J. Chem. Soc. Dalton Trans. 1980, 1145.
[12] G. L. Hillhouse, J. E. Bercaw, Organometallics 1982, 1, 1025.
[13] J. H. Osborne, A. L. Rheingold, W. C. Trogler, J. Am. Chem. Soc.
1985, 107, 7945.
[14] D. M. Antonelli, W. P. Scaefer, G. Parkin, J. E. Bercaw, J.
Organomet. Chem. 1993, 462, 213.
[15] G. Proulx, R. G. Bergman, J. Am. Chem. Soc. 1995, 117, 6382.
[16] G. Proulx, R. G. Bergman, Organometallics 1996, 15, 684.
[17] M. G. Fickes, W. M. Davis, C. C. Cummins, J. Am. Chem. Soc.
1995, 117, 6384.
kꢀr =1.0ꢀ107 sꢀ1, k2 =kd =8.0ꢀ109 mꢀ1 sꢀ1, kp =2.0ꢀ106 mꢀ1 sꢀ1
.
B) Simulated (gray) and experimental (black) data for the formation of
[MnV(NMes)(tpfc)] from the reaction of 15 mm [Mn(tpfc)] and 5 mm
mesityl azide.
for the reaction of a manganese corrole with aryl azides to
give imido metal complexes. In this mechanism, the tran-
sition-metal complex captures a triplet nitrene formed by
thermal or photochemical activation of the organic azide. The
compelling evidence presented for this mechanism is 1) com-
plex dependence of the kinetics on metal concentration with
zeroth order over 30% of the reaction), 2) the kinetics have
been modeled successfully for the reaction mechanism
described in Scheme 2, and 3) substituents in both ortho
positions (Me or Cl, but not F) are required. Contrary to
conventional wisdom that highly reducing metal complexes
are needed for a reaction with organic azides, we have
demonstrated that effective imido metal formation via
nitrene capture does not require a highly reducing center.
Investigations into harnessing this mechanistic paradigm for
selective nitrene transfer under thermal or photochemical
catalysis are in progress.
[18] S. Patai, Z. Rappoport in The Chemistry of Azides (Eds.: S. Patai,
Z. Rappoport), Wiley-Interscience, New York, 1995.
[19] W. T. Borden, N. P. Gristan, C. M. Hadad, W. L. Karney, C. R.
Keminitz, M. S. Platz, Acc. Chem. Res. 2000, 33, 765.
[20] N. P. Gritsan, Z. Zhu, C. M. Hadad, M. S. Platz, J. Am. Chem.
Soc. 1999, 121, 1202.
[21] N. P. Gristan, D. Tigelaar, M. S. Platz, J. Phys. Chem. A 1999, 103,
4465.
[22] E. Leyva, M. S. Platz, G. Persy, J. Wirz, J. Am. Chem. Soc. 1986,
108, 3783.
Experimental Section
Compounds were prepared and handled by standard vacuum-line and
glove-box techniques. Toluene and acetonitrile were predried over
[23] R. J. Sundberg, S. R. Sutar, M. Brenner, J. Am. Chem. Soc. 1972,
94, 513.
[24] W. L. Karney, W. T. Borden, J. Am. Chem. Soc. 1997, 119, 3347.
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 6203 –6207