C O M M U N I C A T I O N S
Scheme 2 a
Acknowledgment. Funding for this research was provided by
the National Institutes of Health (GM63167-01A1). We are grateful
to Professor William Fenical (UCSD) for generously providing IR,
1H NMR, and 13C NMR spectra of natural (+)-brasilenyne.
Supporting Information Available: Detailed procedures and full
characterization of all compounds along with 1H and 13C NMR and IR
spectra of synthetic (+)-brasilenyne (PDF). X-ray crystallographic files
in CIF format. This material is available free of charge via the Internet
References
(1) (a) Erickson, K. L. In Marine Natural Products; Scheuer, P. J., Ed.;
Academic Press: New York, 1983; Vol. 5, pp 131-257. (b) Faulkner,
D. J. Nat. Prod. Rep. 2001, 18, 1.
(2) (a) For a review of construction of medium-ring ethers, see: Elliott, M.
C. Contemp. Org. Synth. 1994, 1, 457. (b) Hirama, M.; Rainder, J. D.;
Eds. Synthesis of Marine Natural Products Containing Polycyclic Ethers.
Tetrahedron Symposium in Print No. 90 2002, 58, 1779-2040. (c)
Fujiwara, K.; Awakura, D.; Tsunashima, M.; Nakamura, A.; Honma, T.;
Murai, A. (+)-Obtusenyne. J. Org. Chem. 1999, 64, 2616. (d) For
representative examples of total synthesis of (+)-laurencin, see: Bratz,
M.; Bullock, W. H.; Overman, L. E.; Takemoto, T. J. Am. Chem. Soc.
1995, 117, 5958. (e) Burton, J. W.; Clark, J. S.; Derrer, S.; Stork, T. C.;
Bendall, J. G.; Holmes, A. B. J. Am. Chem. Soc. 1997, 119, 7483. (f)
Tsushima, K.; Murai, A. Tetrahedron Lett. 1992, 33, 4345. (g) Crimmins,
M. T.; Emmitte, K. A. Org. Lett. 1999, 1, 2029. (h) Crimmins, M. T.;
Emmitte, K. A. (-)-Isolaurallene. J. Am. Chem. Soc. 2001, 123, 1533.
(3) (a) Kinnel, R. B.; Dieter, R. K.; Meinwald, J.; Engen, D. V.; Clardy, J.
Eisner, T.; Stallard, M. O.; Fenical, W. Proc. Natl. Acad. Sci. U.S.A. 1979,
76, 3576. (b) Fenical, W.; Sleeper, H. L.; Paul, V. J.; Stallard, M. O.;
Sun, H. H. Pure Appl. Chem. 1979, 51, 1865.
(4) The parent 2,3,4,9-tetrahydrooxonin ring is unknown.
a Conditions: (a) propanal, BF3‚Et2O, Et2O, -30 °C to rt, 2 h, 85%; (b)
BH3‚THF, THF, 0 °C, 3 h, 82%; (c) TBSCl, pyridine, CH2Cl2, rt, 4 h,
85%; (d) (1) bis(trimethylsilyl)acetylene, TiCl4, CH2Cl2, -73 °C, 3 h then
(2) p-TSA (1 mol %), benzene, Dean-Stark, 1 h, 86%; (e) N-iodosuccin-
imide, AgNO3 (10 mol %), DMF, rt, 10 min, 95%; (f) KO2CNdNCO2K,
AcOH, THF/i-PrOH, rt, 6 h, 80%; (g) MeOMeNH‚HCl, AlMe3, CH2Cl2, 0
°C to rt, 1 h, 93%; (h) PMBCl, Ag2O, CH2Cl2, rt, 24 h, 82%; (i) DIBAL-
H, CH2Cl2, -73 °C, 3 h, 87%; (j) allylB(lIpc)2, Et2O, -100 °C, 2 h, 89%;
(k) chlorodimethylvinylsilane, Et3N, CH2Cl2, 0 °C to rt, 30 min, 91%; (l)
Schrock’s catalyst (5 mol %), benzene, rt, 1 h, 92%; (m) [allylPdCl]2 (7.5
mol %), TBAF, rt, 60 h, 61%. (n) TBSOTf, pyridine, DMAP (10 mol %),
CH2Cl2, 0 °C to rt, 2 h, 88%; (o) DDQ, CH2Cl2/H2O (19/1), rt, 30 min,
84%; (p) Dess-Martin periodinane, CH2Cl2, rt, 2 h, 83%; (q) 1,3-
bis(triisopropylsilyl)propyne, n-BuLi, THF, -74 °C to rt, 8 h, 83% (Z/E )
6/1); (r) TBAF, THF, 0 °C, 1.5 h, 93%; (s) CCl4, (n-Oct)3P, toluene, 60-
65 °C, 12 h, 92%.
(5) Denmark, S. E.; Yang, S.-M. J. Am. Chem. Soc. 2002, 124, 2102.
(6) L-(S)-Malic acid was purchased from Aldrich and was shown to be of
99% ee by CSP-GLC analysis.
(7) All new compounds have been fully characterized, and all yields
correspond to isolated, analytically pure materials. For detailed experi-
mental procedures, see Supporting Information.
(8) To the best of our knowledge, the ring opening of a 1,3-dioxolanone with
bis(trimethylsilyl)acetylene is unprecedented. Ring opening of acetal
templates with silylacetylenic compounds promoted by Lewis acid have
been reported, see: (a) Johnson, W. S.; Elliott, R.; Elliott, J. D. J. Am.
Chem. Soc. 1983, 105, 2904. (b) Yamamoto, Y., Nishii, S.; Yamada, J.-i.
J. Am. Chem. Soc. 1986, 108, 7116. (c) Rychnovsky, S. D.; Dahanukar,
V. H. J. Org. Chem. 1996, 61, 7648.
(9) Mashraqui, S. H.; Kellogg, R. M. J. Org. Chem. 1984, 49, 2513.
(10) The S-configuration at the propargylic position was confirmed by
conversion of 5 to a hexacarbonyldicobalt complex (with Co2(CO)8),
whose full stereostructure was confirmed by single-crystal X-ray diffrac-
tion. The crystallographic coordinates of the cobalt complex have been
deposited with the Cambridge Crystallographic Data Centre; deposition
no. CCDC-195245.
(11) Nishikawa, T.; Shibuya, S.; Hosokawa, S.; Isobe, M. Synlett 1994, 485.
(12) For modified procedures, see: (a) Nicolaou, K. C.; Marron, B. E.; Veale,
C. A.; Webber, S. E.; Serhan, C. N. J. Org. Chem. 1989, 54, 5527. (b)
Chavez, D. E.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2001, 40, 3667.
(13) For a modified procedure, see: Nemoto, H.; Nagamochi, M.; Ishibashi,
H.; Fukumoto, K. J. Org. Chem. 1994, 59, 74.
(14) Bouzide, A.; Sauve, G. Tetrahedron Lett. 1997, 38, 5945.
(15) The diastereoselectivity of allylation of 4 with allyltrimethylsilane was
only 74/26 when promoted by BF3‚Et2O, see: (a) Danishefsky, S. J.;
Deninno, M. P.; Phillips, G. B.; Zelle, R. E. Tetrahedron 1986, 42, 2809.
(b) For addition of allyltributylstannes to R-alkoxy aldehydes, see: Keck,
G. E.; Boden, E. P. Tetrahedron Lett. 1984, 25, 265.
(16) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1989, 54, 1570.
(b) Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401.
(17) Schrock’s molybdenum complex is commercially available (Strem) or can
be prepared according to the reported procedure with consistent purity
and reactivity, see: (a) Fox, H. H.; Yap, K. B.; Robbins, J.; Cai, S.;
Schrock, R. R. Inorg. Chem. 1992, 31, 2287. (b) Schrock, R. R.; Murdzek,
J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; O’Regan, M. J. Am. Chem.
Soc. 1990, 112, 3875. (c) Oskam, J. H.; Fox, H. H.; Yap, K. B.;
McConville, D. H.; O’Dell, R.; Lichtenstein, B. J.; Schrock, R. R. J.
Organomet. Chem. 1993, 459, 185. (d) Fox, H. H.; Lee, J.-K.; Park, L.
Y.; Schrock, R. R. Organometallics 1993, 12, 759.
with DDQ18 followed by oxidation with Dess-Martin periodinane19
afforded 11 in 61% overall yield from coupling product 2. Peterson-
type olefination20 was employed to introduce the required Z-enyne
side chain. Treatment of 11 with lithiated 1,3-bis(triisopropyl)-
propyne at low temperature followed by slowly warming the
solution to room temperature produced the enyne in 83% yield as
a ca. 6/1 Z/E mixture of geometrical isomers. Subsequently, removal
of the TBS as well as the TIPS groups with TBAF afforded the
hydroxy enyne 12 in 93% yield. Finally, inversion of 8R-hydroxy
group into the 8S-chloride using CCl4/(n-Oct)3P2f completed the
total synthesis of (+)-brasilenyne 1. The spectroscopic and analyti-
cal data from the synthetic sample were identical in all respects
1
(mp, H NMR, 13C NMR, IR, and [R]24D) to those reported for
natural (+)-brasilenyne.
In conclusion, the first total synthesis of (+)-brasilenyne has been
accomplished in 19 steps (5.1% overall) from L-(S)-malic acid. The
synthesis features the sequential RCM/silicon-assisted intramo-
lecular cross-coupling method for construction of a medium-sized
ring ether bearing a 1,3-cis,cis-diene unit. Extension of this strategy
to the synthesis of other medium-sized ring and macrocyclic
compounds is under active study.
(18) Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O.
Tetrahedron 1986, 42, 3021.
(19) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
(20) (a) Corey, E. J.; Rucker, C. Tetrahedron Lett. 1982, 23, 719. (b) See also
Yamakado, Y.; Ishiguro, M.; Ikeda, N.; Yamamoto, H. J. Am. Chem. Soc.
1981, 103, 5568.
JA028936Q
9
J. AM. CHEM. SOC. VOL. 124, NO. 51, 2002 15197