The complexation-induced chemical shifts, which are ob-
tained during titration experiments, can be used to infer a quite
detailed picture of anion binding. The aromatic amide NH
signal becomes broad and disappeared when ca. 0.5 equivalent
of F–, H2PO42 or AcO2 was added. In the case of chloride and
hydrogensulfate anions, this signal is easy to follow during the
titration experiment, and large downfield shifts ( > 0.8 ppm)
were observed. These findings indicated that the aromatic
amide proton strongly interacts with anionic guests. Upon
addition of the anions, upfield movements of all aromatic proton
signals were observed. This observation was tentatively as-
cribed to charge transfer interactions between the amide-bound
anion and the electron-deficient 3,5-dinitrobenzene moiety.
Downfield shifts of the aliphatic amide NH signal, typical for
hydrogen bonding interaction, were detected upon exposure to
certain anions. The degree of these shifts varied considerably
from 1.7 ppm for fluoride to 0.2 ppm for hydrogensulfate ion
(CD3CN).
turn turquoise (l = 408, 700 nm), yellow (l = 378 nm) and
purple (l = 537, 393 nm), respectively. These visual changes
are completely consistent with the association constants
recorded for 4 in acetonitrile solutions, namely F2 ì H2PO4
2
ì AcO2 > Cl2 ~ HSO42 ì Br2.
In conclusion, we have developed an amide-based macro-
cyclic sensor for anions that not only allows for the colorimetric
detection of F2, AcO2 and H2PO4 ions in both DMSO and
2
acetonitrile solutions, but also shows selective coloration in
acetonitrile for those anions with similar basicity.
Financial support from the State Committee for Scientific
Research (Project T09 A 087 21) is gratefully acknowledged.
Notes and references
1 F. P. Schmidtchen and M. Berger, Chem. Rev., 1997, 97, 1609; M. M. G.
Antonisse and D. N. Reinhoudt, Chem. Commun., 1998, 443; P. A. Gale,
Coord. Chem. Rev., 2000, 199, 181; P. A. Gale, Coord. Chem. Rev., 2001,
213, 79; P. D. Beer and P. A. Gale, Angew. Chem., Int. Ed., 2001, 40,
486.
A DMSO solution of receptor 4 (231024 M) shows dramatic
color changes upon addition of F–, AcO– and H2PO4– ions (Fig.
1). Specifically, it was found that initially colorless solutions
turn dark blue (l = 593, 708 nm), yellow (l = 375 nm) and
yellow (l = 384 nm) when exposed to fluoride, dihydrogen
phosphate and acetate ions, respectively. On the other hand, no
color changes were observed upon addition of chloride,
bromide or hydrogensulfate anions.
The observed color changes also took place in CH3CN
solutions. Receptor 4 forms a colorless solution, either alone or
in the presence of Cl2, Br2 or HSO42. Upon addition of
fluoride, acetate and dihydrogen phosphate ions, the solutions
2 C. B. Black, B. Andrioletti, A. C. Try, C. Ruiperez and J. L. Sessler, J.
Am. Chem. Soc., 1999, 121, 10438; H. Miyaji, W. Sato, J. L. Sessler and
V. M. Lynch, Tetrahedron Lett., 2000, 41, 1369; P. Anzenbacher Jr., A.
C. Try, H. Miyaji, K. Jursikova, V. M. Lynch, M. Marquez and J. L.
Sessler, J. Am. Chem. Soc., 2000, 122, 10268; H. Miyaji, W. Sato and J.
L. Sessler, Angew. Chem., Int. Ed., 2000, 39, 1777; H. Miyaji and J. L.
Sessler, Angew. Chem., Int. Ed., 2001, 40, 154; C. Lee, D. H. Lee and J.-I.
Hong, Tetrahedron Lett., 2001, 42, 8665; K. H. Lee, H.-Y. Lee, D. H. Lee
and J. -I Hong, Tetrahedron Lett., 2001, 42, 5447; D. H. Lee, K. H. Lee
and J.-I. Hong, Org. Lett., 2001, 3, 5; D. H. Lee, H. Y. Lee, K. H. Lee and
J. -I Hong, Chem. Commun., 2001, 1188; R. Kato, S. Nihizawa, T.
Hayashita and N. Teramae, Tetrahedron Lett., 2001, 42, 5053; F.
Sancenon, A. B. Descalzo, R. Martinez-Manaez, M. A. Miranda and J.
Soto, Angew. Chem., Int. Ed., 2001, 40, 2640; F. Sancenon, R. Martinez-
Manaez and J. Soto, Angew. Chem., Int. Ed., 2002, 41, 1416.
Table 1 Association constants (dm3 mol21) from 1H NMR titrations for
complexes of receptor 4 with anionic guests in DMSO-d6 or CD3CNa
3 P. A. Gale, L. J. Twyman, C. I. Handlin and J. L. Sessler, Chem.
Commun., 1999, 1851; K. Niikura, A. P. Bisson and E. V. Anslyn, J.
Chem. Soc., Perkin Trans. 2, 1999, 1111; J. J. Lavigene and E. V. Anslyn,
Angew. Chem., Int. Ed., 1999, 38, 3666.
b
H+G
Ka (DMSO-d6) Ka (CD3CN) pKa
F2
1+2
1+1
1+1
1+1
1+1
7.8 3 106
337
142
32
7.5 3 106
503
4271
138
3.18
4.76
2.15
23.1
26.1
AcO2
H2PO4
4 S. Valiyaveettil, J. F. J. Engbersen, W. Verboom and D. N. Reinhoudt,
Angew. Chem., Int. Ed., 1993, 32, 900; A. P. Bisson, V. M. Lynch, M.-K.
C. Monahan and E. V. Anslyn, Angew. Chem., Int. Ed., 1997, 36, 2340;
A. P. Davis, J. J. Perry and R. P. Williams, J. Am. Chem. Soc., 1997, 119,
1793; K. Kavallieratos, C. M. Bertao and R. H. Crabtree, J. Org. Chem.,
1999, 64, 1675; G. M. Hubner, J. Glaser, C. Seel and F. Vögtle, Angew.
Chem., Int. Ed., 1999, 38, 383; A. Danby, L. Seib, N. W. Alcock and K.
Bowman-James, Chem. Commun., 2000, 973; F. Werner and H.-J.
Schneider, Helv. Chim. Acta, 2000, 83, 465; M. A. Hossain, J. M.
Llinares, D. Powell and K. Bowman-James, Inorg. Chem., 2001, 40,
2936; P. A. Gale, S. Camiolo, C. P. Chapman, M. E. Light and M. B.
Hursthouse, Tetrahedron Lett., 2001, 42, 5095; S. Kubik, R. Goddard, R.
Kirchner, D. Nolting and J. Seidel, Angew. Chem., Int. Ed., 2001, 40,
2648; A. Szumna and J. Jurczak, Eur. J. Org. Chem., 2001, 21, 4031.
5 D. T. Gryko, D. Gryko and J. Jurczak, Synlett, 1999, 1310; P. Pia˜tek, M.
M. Gruza and J. Jurczak, Tetrahedron: Asymmetry, 2001, 12, 1763.
6 T. R. Kelly and M. H. Kim, J. Am. Chem. Soc., 1994, 116, 7072.
7 Binding constants Ka were calculated using HypNMR curve-fitting
software: C. Frassineti, S. Ghelli, P. Gans, A. Sabatini, M. S. Moruzzi and
A. Vacca, Anal. Biochem., 1995, 231, 374.
–
2
HSO4
Cl2
5
164
a Anions were added as their tetrabutylammonium salts, all errors are ±10%.
b In water at 25 C, I = 0; D. D. Perrin, Pure Appl. Chem., 1969, 20,133.
Fig. 1 Color changes (if any) induced by the addition of anions. From left
to right (acetonitrile solutions): 4; 4 + F2; 4 + Cl2; 4 + Br2; 4 + AcO2; 4
+ H2PO42; 4 + HSO4
.
2
CHEM. COMMUN., 2002, 2450–2451
2451