B. K. Banik et al. / Bioorg. Med. Chem. 13 (2005) 3611–3622
3621
7. For catalytic asymmetric synthesis, see: (a) Taggi, A. E.;
Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J., III;
Lectka, T. J. Am. Chem. Soc. 2000, 122, 7831–7832; (b)
Magriotis, P. A. Angew. Chem. 2001, 113, 4507–4509; (c)
Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124,
1578–1579; (d) Cordova, A.; Watanabe, S.; Tanaka, F.;
Notz, W.; Barbas, C. F., III. J. Am. Chem. Soc. 2002, 124,
1866–1867; (e) France, S.; Weatherwax, A.; Taggi, A. E.;
Lectka, T. Acc. Chem. Res. 2004, 37, 592–600.
14. (a) Banik, I.; Becker, F. F.; Banik, B. K. J. Med. Chem.
2003, 46, 12–15; (b) Banik, B. K.; Becker, F. F.; Banik, I.
Bioorg. Med. Chem. 2004, 12, 2523–2528. Presented at the
American Chemical Society (ACS) National Meeting,
Orlando, FL, April 2002, MEDI-213. We sent this paper
for presentation to the ACS on October 31, 2001 and it
was accepted on December 16, 2001. The drug synthesis
and chemistry branch of the NCI tested 24a in their 60 cell
lines and sent us the report on August 8, 2001. This
indicates that we are the pioneer in this field.
8. For polymer-supported synthesis, see: (a) Ruhland, B.;
Bhandari, A.; Gordon, E. M.; Gallop, M. A. J. Am. Chem.
Soc. 1996, 118, 253–254; (b) Furman, B.; Thurmer, R.;
Kaluza, Z.; Lysek, R.; Voelter, W.; Chmielewski, M.
Angew. Chem., Int. Ed. 1999, 38, 1121–1123; (c) Gordon,
K.; Bolger, M.; Khan, N.; Balasubramanian, S. A.
Tetrahedron Lett. 2000, 41, 8621–8625; (d) Schunk, S.;
Enders, D. Org. Lett. 2000, 2, 907–910; (e) Annunziata,
R.; Benaglia, M.; Cinquini, M.; Cozzi, F. Chem. Eur. J.
2000, 6, 133–138; (f) Gordon, K. H.; Balasubramanian, S.
Org. Lett. 2001, 3, 53–56; (g) Schunk, S.; Enders, D. J.
Org. Chem. 2002, 67, 8034–8042; (h) Delpiccolo, C. M. L.;
Mata, E. G. Tetrahedron: Asymmetry 2002, 13, 905–910.
9. Serine protease: (a) Mascaretti, O. A.; Boschetti, C. E.;
Danelon, G. O.; Mata, E. G.; Roveri, O. A. Curr. Med.
Chem. 1995, 1, 441–470; (b) Edwards, P. D.; Bernstein, P.
R. Med. Res. Rev. 1994, 14, 127–194; (c) Sandanayaka, V.
P.; Prashad, A. S.; Yang, Y.; Williamson, T.; Lin, Y. I.;
Mansour, T. S. J. Med. Chem. 2003, 46, 2569–2571.
10. Buynak, J. D.; Rao, A. S.; Fod, G. P.; Carver, C.; Carver,
C.; Adam, G.; Geng, B.; Bachmann, B.; Shobassy, S.;
Lackey, S. J. Med. Chem. 1997, 40, 3423–3433, and
references cited therein.
15. It has also been demonstrated that UAB-8, a conforma-
tionally constrained analogue of retinoic acid, has a
favorable toxicological profile relative to the original
molecule. For example, see: Lin, T. H.; Rogers, T. S.; Hill,
D. L.; Simpson-Herren, L.; Farnell, D. R.; Kochhar, D.
M.; Alam, M.; Brouillette, W. J.; Muccio, D. D. Toxicol.
Appl. Pharmacol. 1996, 139, 310–316.
16. Rigid tricyclic indole analogues of melatonin have also
been synthesized, and the superiority of the cis constrained
isomer over trans as an agonist has been experimentally
proved. For example, see: Garratt, P. J.; Vonhoff, S.;
Rowe, S. J.; Sugden, D. Bioorg. Med. Chem. Lett. 1994, 4,
1559–1564.
17. Angular polyaromatic systems, phenalene derivatives
appeared to be promising restricted ligands for melatonin
receptors. For example, see: Mathe-Allainmat, M.;
Gaudy, F.; Sicic, S.; Dangy-Caye, A.-L.; Shen, S.;
Bremont, B.; Benatalah, Z.; Langlois, M.; Renard, P.;
Delagrange, P. J. Med. Chem. 1996, 39, 3089–3095.
18. Conformationally constrained anesthetic steroids that
modulate GABAA receptors have been studied. For
example, see: Anderson, A.; Boyd, A. C.; Clark, J. K.;
Fielding, L.; Gemmell, D. K.; Hamilton, N. M.; Maid-
ment, M. S.; May, V.; McGuire, R.; McPhail, P.;
Sansbury, F. H.; Sundaram, H.; Taylor, R. J. Med. Chem.
2000, 43, 4118–4125.
19. The discovery of conformationally constrained Taxol
analogues (constrained on the C13 side chain) that can
retain the biological activity of the natural product is an
addition to this principle. For example, see: Barboni, L.;
Lambertucci, C.; Appendino, G.; Vander Velde, D. G.;
Himes, R. H.; Bombardelli, E.; Wang, M.; Snyder, J. P. J.
Med. Chem. 2001, 44, 1576–1587.
20. One of the most well-known strategies in nucleoside
analogue synthesis is replacement of the carbohydrate
groupby relatively constrained acyclic chains. For exam-
ple, see: Hernandez, A. I.; Balzarini, J.; Karlsson, A.;
Camarasa, M. J.; Perez, M. J. J. Med. Chem. 2002, 45,
4254–4263.
21. Conformationally restricted compounds that are more
efficient than their flexible analogues include linezolid
derivatives. For example, see: Selvakumar, N.; Srinivas,
D.; Khera, M. K.; Kumar, M. S.; Mamidi, R. N. V. S.;
Sarnaik, H.; Charavaryamath, C.; Rao, B. S.; Raheem, M.
A.; Das, J.; Iqbal, J.; Rajagopalan, R. J. Med. Chem. 2002,
45, 3953–3962.
22. Conformationally restricted compounds that are more
efficient than their flexible analogues include nicotine
derivatives. For example, see: Ullrich, T.; Krich, S.;
Binder, D.; Mereiter, K.; Anderson, D. J.; Meyer, M.
D.; Pyerin, M. J. Med. Chem. 2002, 45, 4047–4054.
23. (a) Samajdar, S.; Becker, F. F.; Banik, B. K. Tetrahedron
Lett. 2000, 41, 8017–8020; (b) Samajdar, S.; Becker, F. F.;
Banik, B. K. Arkivoc 2001, 27–30; For some examples of
bismuth nitrate-catalyzed reactions from our laboratory,
see: (c) Samajdar, S.; Basu, M. K.; Becker, F. F.; Banik, B.
K. Synth. Commun. 2002, 32, 1917–1921; (d) Samajdar, S.;
Becker, F. F.; Banik, B. K. Synth. Commun. 2001, 31,
2691–2695; (e) Srivastava, N.; Dasgupta, S.; Banik, B. K.
11. Bonneau, P. R.; Hasani, F.; Plouffe, C.; Malenfant, E.;
Laplante, S. R.; Guse, I.; Ogilvie, W. W.; Plante, R.;
Davidson, W. C.; Hopkins, J. L.; Morelock, M. M.;
Cordingley, M. G.; Deziel, R. J. Am. Chem. Soc. 1999,
121, 2965–2973 and references cited therein.
12. (a) Ghatak, A.; Becker, F. F.; Banik, B. K. Heterocycles
2000, 53, 2769–2772; (b) Banik, B. K.; Ghatak, A.; Becker,
F. F. J. Chem. Soc., Perkin Trans. 1 2000, 2179–2181; (c)
Banik, B. K.; Becker, F. F. Tetrahedron Lett. 2000, 41,
6551–6554; (d) Ng, S.; Banik, I.; Okawa, A.; Becker, F. F.;
Banik, B. K. J. Chem. Res. 2001, 118–119; (e) Dasgupta, S.
K.; Banik, B. K. Tetrahedron Lett. 2002, 43, 9445–9447; (f)
Banik, B. K.; Samajdar, S.; Banik, I. Tetrahedron Lett.
2003, 44, 1699–1701; (g) Banik, B. K.; Banik, I.; Hackfeld,
L. Heterocycles 2003, 59, 505–508; (h) Banik, B. K.; Adler,
D.; Nguyen, P.; Srivastava, N. Heterocycles 2003, 61, 101–
104; (i) Banik, B. K.; Banik, I.; Samajdar, S.; Wilson, M.
Heterocycles 2003, 63, 283–296.
13. (a) Becker, F. F.; Banik, B. K. Bioorg. Med. Chem. Lett.
1998, 8, 2877–2880; (b) Banik, B. K.; Venkatraman, M. S.;
Mukhopadhyay, C.; Becker, F. F. Tetrahedron Lett. 1998,
39, 7247–7250; (c) Becker, F. F.; Mukhopadhyay, C.;
Hackfeld, L.; Banik, I.; Banik, B. K. Bioorg. Med. Chem.
2000, 8, 2693–2699; (d) Banik, B. K.; Ghatak, A.;
Mukhopadhyay, C.; Becker, F. F. J. Chem. Res. 2000,
108–109; (e) Mukhopadhyay, C.; Becker, F. F.; Banik, B.
K. J. Chem. Res. 2001, 28–31; (f) Banik, B. K.; Becker, F.
F. Bioorg. Med. Chem. 2001, 9, 593–605; (g) Banik, B. K.;
Becker, F. F. Curr. Med. Chem. 2001, 8, 1513–1533; (h)
Current Approaches to the Development of New Chemo-
therapeutic Agents; Banik, B. K., Ed.; Current Medicinal
Chemistry; Bentham Science, 2001; Vol. 8; (i) Banik, B. K.;
Samajdar, S.; Banik, I. J. Org. Chem. 2004, 69, 213–216;
(j) Also see: Becker, F. F.; Banik, B. K. U.S. Patent
6,015,811, 2000; (k) Becker, F. F.; Banik, B. K. U.S.
Patent 6,184,224, 2001; (l) Becker, F. F.; Banik, B. K. U.S.
Patent 6,362,200, 2002.