M. Galobardes et al. / Tetrahedron Letters 43 (2002) 6145–6148
6147
4048.
O
O
4. For diastereoselective reductions of b-hydroxy ketones
leading to syn 1,3-diols, see: (a) Narasaka, K.; Pai, F.-C.
Tetrahedron 1984, 40, 2233–2238; (b) Kiyooka, S.-i.;
Kuroda, H.; Shimasaki, Y. Tetrahedron Lett. 1986, 27,
3009–3012; (c) Chen, K.-M.; Hardtmann, G. E.; Prasad,
K.; Repic, O.; Shapiro, M. J. Tetrahedron Lett. 1987,
28, 155–158; (d) Evans, D. A.; Hoveyda, A. H. J. Org.
Chem. 1990, 55, 5190–5192; (e) Sarko, C. R.; Collibee,
S. E.; Knorr, A. L.; DiMare, M. J. Org. Chem. 1996,
61, 868–873; (f) Bartoli, G.; Bellucci, M. C.; Bosco, M.;
Dalpozzo, R.; Marcantoni, E.; Sambri, L. Chem. Eur. J.
2000, 6, 2590–2598.
5. For diastereoselective reductions of b-hydroxy ketones
leading to anti 1,3-diols, see: (a) Evans, D. A.; Chap-
man, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988,
110, 3560–3578; (b) Evans, D. A.; Hoveyda, A. H. J.
Am. Chem. Soc. 1990, 112, 6447–6449; (c) Keck, G. E.;
Wager, C. A.; Sell, T.; Wager, T. T. J. Org. Chem.
1999, 64, 2172–2173.
a, b
R
TBSO
Scheme 3. Reagents and conditions: (a) See Refs. 16 and 18.
(b) 2,2-Dimethoxypropane, CH2Cl2, PPTS cat.
Table 3. Protected 1,3-diols 5 from ketone 1
Entry
Aldehyde
R
Yield (%)a
1
2
3
a
c
e
Ph
65
71
55
H2CꢀC(CH3)
(CH3)2CH
a Isolated overall yield.
arise from the reductive step. Then, protection of 3 as a
cyclic acetal was undertaken in order to obtain pure
products and, also, to get more evidences about the
stereochemical outcome of the process through NMR
studies (see Scheme 3). Enantiopure acetals 5 were
finally obtained in 55–71% yield from 1 after chromato-
graphic purification (see Table 3).19
6. (a) Paterson, I.; Perkins, M. V. Tetrahedron Lett. 1992,
33, 801–804; (b) Paterson, I.; Perkins, M. V. Tetra-
hedron 1996, 52, 1811–1834.
7. For recent applications, see: (a) Nicolaou, K. C.; Mur-
phy, F.; Barluenga, S.; Ohshima, T.; Wei, H.; Xu, J.;
Gray, D. L. F.; Baudoin, O. J. Am. Chem. Soc. 2000,
122, 3830–3838; (b) Perkins, M. V.; Sampson, R. A.
Org. Lett. 2001, 3, 123–126; (c) Paterson, I.; Florence,
G. J.; Gerlach, K.; Scott, J. P.; Sereinig, N. J. Am.
Chem. Soc. 2001, 123, 9535–9544; (d) Paterson, I.; Chen,
D. Y.-K.; Franklin, A. S. Org. Lett. 2002, 4, 391–394.
8. For other reports dealing with aldol–reduction
sequences, see: (a) Bonini, C.; Rascioppi, R.; Righi, G.;
Rossi, L. Tetrahedron: Asymmetry 1994, 5, 173–176; (b)
Mahrwald, R.; Costisella, B. Synthesis 1996, 1087–1089;
(c) Bodnar, P. M.; Shaw, J. T.; Woerpel, K. A. J. Org.
Chem. 1997, 62, 5674–5675; (d) Mahrwald, R.; Ziemer,
B. Tetrahedron 1999, 55, 14005–14012; (e) Lu, L.;
Chang, H.-Y.; Fang, J.-M. J. Org. Chem. 1999, 64,
843–853; (f) Mascarenhas, C. M.; Duffey, M. O.; Liu,
S.-Y.; Morken, J. P. Org. Lett. 1999, 1, 1427–1429.
9. (a) Figueras, S.; Mart´ın, R.; Romea, P.; Urp´ı, F.; Vilar-
rasa, J. Tetrahedron Lett. 1997, 38, 1637–1640; (b)
Esteve, C.; Ferrero´, M.; Romea, P.; Urp´ı, F.; Vilarrasa,
J. Tetrahedron Lett. 1999, 40, 5079–5082.
In summary, the boron-mediated aldol reaction of the
a-OTBS ketone 1 followed by in situ reduction with
LiBH4 proceeds with an excellent stereochemical con-
trol. Oxidative treatment of the resulting boronates 2
under very mild conditions avoids the migration of the
TBS group and gives access to pure syn,syn-2-methyl-
1,3-diols. Application of this methodology to the syn-
thesis of natural products is currently in progress in our
laboratories and will be reported in due course.
Acknowledgements
Financial support from the Ministerio de Educacio´n y
Cultura (DGESIC, Grant PM98-1272) and the Gener-
(1998SGR00040
2000SGR00021) and a doctorate studentship (Universi-
tat de Barcelona) to M.G. are acknowledged.
alitat
de
Catalunya
and
10. Galobardes, M.; Gasco´n, M.; Mena, M.; Romea, P.;
Urp´ı, F.; Vilarrasa, J. Org. Lett. 2000, 2, 2599–2602.
11. Ferrero´, M.; Galobardes, M.; Mart´ın, R.; Montes, T.;
Romea, P.; Rovira, R.; Urp´ı, F.; Vilarrasa, J. Synthesis
2000, 1608–1614.
12. Structure of 4a is temptative. It has been assumed that
migration of TBS group proceeds to the closest free OH.
13. Treatment of a 3:1 mixture of 3a and 4a with HF 48%
-CH3CN for 45 min under standard deprotection con-
ditions affords a 86% of a single triol, which was
identified as (1R,2R,3S,4S)-2-methyl-1-phenyl-1,3,4-
pentanetriol.
References
1. For a review on stereoselective aldol reactions, see:
Cowden, C. J.; Paterson, I. In Organic Reactions;
Paquette, L. A., Ed.; John Wiley and Sons: New York,
1997; Vol. 51, pp. 1–200.
2. For recent developments on stereoselective catalytic
aldol reactions, see: Carreira, E. M. In Comprehensive
Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.;
Yamamoto, H., Eds.; Springer: Heidelberg, 1999; Vol. 3,
pp. 997–1065.
14. Greene, T. W.; Wuts, P. G. M. Protective Groups in
Organic Synthesis; John Wiley and Sons: New York,
1999.
15. All new compounds have spectroscopic and analytical
data consistent with the assigned structure.
3. For a review on diastereoselective reduction of carbonyl
groups, see: Davis, A. P. In Stereoselective Synthesis,
Methods of Organic Chemistry (Houben-Weyl); Helm-
chen, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E.,
Eds.; Thieme: Stuttgart, 1995; Vol. E21d, pp. 3988–