Capitosti et al.
bridge-acceptor). Photoinduced electron-transfer reac-
tions in these molecules occur through either a super-
exchange (through-bond) or through-space mechanism.
The chemistry of dendrimers has expanded dramati-
cally in recent years.17 This research is driven in part by
the desire to utilize the inherent structural properties of
these unique macromolecules for use in energy transfer,18
catalysis,19 sensor applications,20 and as drug delivery
agents.21 Not surprisingly, the composition of end-groups
in the dendrimer can influence solubility,22 conforma-
tion,23 and further synthetic transformations. It is clear
that the ability to perform transformations on terminal
functional groups is quite important. Our group13 and
others14-16 have used the dendritic architecture as a
bridging group in intramolecular photoinduced electron-
transfer. We have chosen to use a core electron-donor
group and electron-acceptor end-groups for two reasons.
First, this arrangement of donor and acceptor groups
should result in an increased yield of charge-separation
relative to monomeric analogues.7d Second, the reduction
of one or more of the electron-acceptor groups on the
dendrimer surface makes an intermolecular electron-
transfer to a secondary acceptor group, also present in
solution, competitive with charge recombination. In this
way, the dendrimer might act similar to the photosyn-
thetic reaction center, where the reduced ubiquinone is
removed through a transmembrane process, by removing
the electron from the porphyrin for potentially lengthy
periods of time.
We recently described photoinduced electron-transfer
reactions in flexible Newkome-type dendrimers that
contained tetraphenylporphyrin cores and anthraquinone
peripheral groups.13 Photoexcitation of the porphyrin core
resulted in efficient electron-transfer to the anthra-
quinone groups. The electron-transfer rate constants in
these dendrimers were found to be largely independent
of the generation number, indicating a through-space
electron-transfer mechanism. These results were ex-
plained in terms of the substitution pattern and flexible
nature of these dendrimers that resulted in extensive
backfolding of the dendrimer branches. Such backfolding
allowed both π-stacking of the terminal anthraquinone
(8) (a) Lammi, R. K.; Ambroise, A.; Balasubramian, T.; Wagner, R.
W.; Bocian, D. F.; Holten, D.; Lindsey, J . S. J . Am. Chem. Soc. 2000,
122, 7579-7591. (b) Rao, P. D.; Dhanalekshmi, S.; Littler, B. J .;
Lindsey, J . S. J . Org. Chem. 2000, 65, 7323-7344. (c) Li, J .; Ambroise,
A.; Yang, S. I.; Diers, J . R.; Seth, J .; Wack, C. R.; Bocian, D. F.; Holten,
D.; Lindsey, J . S. J . Am. Chem. Soc. 1999, 121, 8927-8940. (d) Li, J .;
Diers, J . R.; Seth, J .; Yang, S. I.; Bocian, D. F.; Holten, D.; Lindsey, J .
S. J . Org. Chem. 1999, 64, 9090-9100. (e) Yang, S. I.; Seth, J .;
Balasubramanian, T.; Kim, D.; Lindsey, J . S.; Holten, D.; Bocian, D.
F. J . Am. Chem. Soc. 1999, 121, 4008-4018. (f) Shediac, R.; Gray, M.
H. B.; Uyeda, H. T.; J ohnson, R. C.; Hupp, J . T.; Angiolillo, P. J .;
Therien, M. J . J . Am. Chem. Soc. 2000, 122, 7017-7033. (g) Iovine, P.
M.; Kellett, M. A.; Redmore, N. P.; Therien, M. J . J . Am. Chem. Soc.
2000, 122, 8717-8727. (h) Kumble, R.; Palese, S.; Lin, V. S.-Y.; Therien,
M. J .; Hochstrasser, R. M. J . Am. Chem. Soc. 1998, 120, 11489-11498.
(i) Hyslop, A. G.; Therien, M. J . Inorg. Chim. Acta 1998, 275-276,
427-434. (j) Priyadarshy, S.; Therien, M. J .; Beratan, D. N. J . Am.
Chem. Soc. 1996, 118, 1497-503.
(9) (a) Harriman, A.; Hissler, M.; Trompette, O.; Ziessel, R. J . Am.
Chem. Soc. 1999, 121, 2516-2525. (b) Harriman, A.; Odobel, F.;
Sauvage, J .-P. J . Am. Chem. Soc. 1995, 117, 9461-9472. (c) Collin,
J .-P.; Harriman, A.; Heitz, V.; Odobel, F.; Sauvage, J .-P. J . Am. Chem.
Soc. 1994, 116, 5679-5690. (d) Brun, A. M.; Harriman, A.; Heitz, V.;
Sauvage, J .-P. J . Am. Chem. Soc. 1991, 113, 8657-8663. (e) Dixon, I.
M.; Collin, J .-P.; Sauvage, J .-P.; Barigelletti, F.; Flamigni, L. Angew.
Chem., Int. Ed. 2000, 39, 1292-1295. (f) Andersson, M.; Linke, M.;
Chambron, J .-C.; Davidsson, J .; Heitz, V.; Sauvage, J .-P.; Hammar-
stroem, L. J . Am. Chem. Soc. 2000, 122, 3526-3527.
(10) (a) Connolly, J . S.; Hurley, J . K.; Bell, W. L.; Marsh, K. L. In
Supramolecular Photochemistry; Balzani, V., Ed.; D. Reidel Publishing
Company: Boston, 1987. (b) Schmidt, J . A.; McIntosh, A. R.; Weedon,
A. C.; Bolton, J . R.; Connolly, J . S.; Hurley, J . K.; Wasielewski, M. R.
J . Am. Chem. Soc. 1988, 110, 1733-1740. (c) Kong, J . L. Y.; Spears,
K. G.; Loach, P. A. Photochem. Photobiol. 1982, 35, 545-553. (d)
McIntosh, A. R.; Siemiarczuk, A.; Bolton, J . R.; Stillman, M. J .; Ho,
T.-F.; Weedon, A. C. J . Am. Chem. Soc. 1983, 105, 7215-7223. (e)
Siemiarczuk, A.; McIntosh, A. R.; Ho, T.-F.; Stillman, M. J .; Roach, K.
J .; Weedon, A. C.; Bolton, J . R.; Connolly, J . S. J . Am. Chem. Soc. 1983,
105, 7224-7230.
(11) (a) Turro´, C.; Chang, C. K.; Leroi, G. E.; Cukier, R. I.; Nocera,
D. G. J . Am. Chem. Soc. 1992, 114, 4013-4015. (b) Roberts, J . A.;
Kirby, J . P.; Nocera, D. G. J . Am. Chem. Soc. 1995, 117, 8051-8052.
(c) Flamigni, L.; Armaroli, N.; Barigelletti, F.; Chambron, J .-C.;
Sauvage, J .-P.; Solladie, N. New J . Chem. 1999, 23, 1151-1158. (d)
Heleg-Shabtai, V.; Gabriel, T.; Willner, I. J . Am. Chem. Soc. 1999, 121,
3220-3221. (e) Willner, I.; J oselevich, E. J . Phys. Chem. B 1999, 103,
9262-9268. (f) Willner, I.; Kaganer, E.; J oselevich, E.; Durr, H.; David,
E.; Gunter, M. J .; J ohnston, M. R. Coord. Chem. Rev. 1998, 171, 261-
285. (g) Kaganer, E.; J oselevich, E.; Willner, I.; Chen, Z.; Gunter, M.
J .; Gayness, T. P.; J ohnson, M. R. J . Phys. Chem. B 1998, 102, 1159-
1165.
(12) (a) Fox, M. A. Acc. Chem. Res. 1999, 32, 201-207. (b) Kaschak,
D. M.; J ohnson, S. A.; Waraksa, C. C.; Pogue, J .; Mallouk, T. E. Coord.
Chem. Rev. 1999, 185-186, 403-416. (c) J iang, B.; Yang, S. W.; Bailey,
S. L.; Hermans, L. G.; Niver, R. A.; Bolcar, M. A.; J ones, W. E., J r.
Coord. Chem. Rev. 1998, 171, 365-386. (d) Fossum, R. D.; Fox, M. A.
J . Phys. Chem. B 1997, 101, 6384-6393. (e) Fossum, R. D.; Fox, M. A.
Polym. Mater. Sci. Eng. 1997, 76, 389-390. (f) Watkins, D. M.; Fox,
M. A. J . Am. Chem. Soc. 1994, 116, 6441-6442. (g) Webber, S. E.
Chem. Rev. 1990, 90, 1469.
(13) (a) Rajesh, C. S.; Capitosti, G. J .; Cramer, S. C.; Modarelli, D.
A. J . Phys. Chem. B 2001, 105, 10175-10188. (b) Capitosti, G. J .;
Cramer, S. C.; Rajesh, C. S.; Modarelli, D. A. Org. Lett. 2001, 3 (11),
1645-1648.
(14) Ghaddar, T. H.; Wishart, J . F.; Kirby, J . P.; Whitesell, J . K.;
Fox, M. A. J . Am. Chem. Soc. 2001, 123, 12832-12836.
(15) Segura, J . L.; Go´mez, R.; Mart´ın, N.; Luo, C.; Swartz, A.; Guldi,
D. M. Chem. Commun. 2001, 707-708.
(16) Toba, R.; Quintela, J . M.; Peinador, C.; Roma´n, E.; Kaifer, A.
E. Chem. Commun. 2001, 857-858. Ceroni, P.; Vicinelli, V.; Maestri,
M.; Balzani, V.; Mu¨ller, W. M.; Mu¨ller, U.; Hahn, U.; Osswald, F.;
Vo¨gtle, F. New J . Chem. 2001, 25, 989-993.
(17) (a) Grayson, S. M.; Fre´chet, J . M. J . Chem. Rev. 2001, 101,
3819-3868. (b) Bosman, A. W.; J anssen, H. M.; Meijer, E. W. Chem.
Rev. 1999, 99, 1665-1688. (c) Newkome, G. R.; He, E.; Moorefield, C.
N. Chem. Rev. 1999, 99, 1689-1746. (d) Zeng, F.; Zimmerman, S. C.
Chem. Rev. 1997, 97, 1681.
(18) (a) Matos, M. S.; Hofkens, J .; Verheijen, W.; De Schryver, F.
C.; Hecht, S.; Pollak, K. W.; Fre´chet, J . M. J .; Forier, B.; Dehaen, W.
Macromolecules 2000, 33, 2967-2973. (b) Adronov, A.; Gilat, S. L.;
Fre´chet, J . M. J .; Ohta, K.; Neuwahl, F. V. R.; Fleming, G. R. J . Am.
Chem. Soc. 2000, 122, 1175-1185. (c) Adronov, A.; Fre´chet, J . M. J .
Chem. Commun. 2000, 1701-1710. (d) Xu, Z.; Moore, J . S. Acta Polym.
1994, 45, 83-87. (e) Devadoss, C.; Bharati, P.; Moore, J . S. J . Am.
Chem. Soc. 1996, 118, 9635-9644. (f) Shortreed, M. R.; Swallen, S.
F.; Shi, Z.-Y.; Tan, W.; Xu, Z.; Devadoss, C.; Moore, J . S.; Kopelman,
R. J . Phys. Chem. B 1997, 101, 6318-6322. (g) Balzani, V.; Campagna,
S.; Denti, G.; J uris, A.; Serroni, S.; Venturi, M. Acc. Chem. Res. 1998,
31, 26-34. (h) Zhou, X.; Tyson, D. S.; Castellano, F. N. Angew. Chem.,
Int. Ed. 2000, 39, 4301-4305.
(19) Bhyrappa, P.; Young, J . K.; Moore, J . S.; Suslick, K. S. J . Am.
Chem. Soc. 1996, 118, 5708-5711.
(20) Snejdarkova, M.; Svobodova, L.; Gajdos, V.; Hianik, T. J . Mater.
Sci. 2001, 12, 1079-1082. Krasteva, N.; Besnard, I.; Guse, B.; Bauer,
R. E.; Muellen, K.; Yasuda, A.; Vossmeyer, T. Nano Lett. 2002, 2, 551-
555. Vossmeyer, T.; Guse, B.; Besnard, I.; Bauer, R. E.; Mullen, K.;
Yasuda, A. Adv. Mater. 2002, 14, 238-242. Schlupp, M.; Weil, T.;
Berresheim, A. J .; Wiesler, U. M.; Bargon, J .; Mullen, K. Angew. Chem,
Int. Ed. 2001, 40, 4011-4015.
(21) Esfand, R.; Tomalia, D. A. Drug Delivery Today 2001, 6, 427-
436. Liu, M.; Kono, K.; Freche´t, J . M. J . J . Controlled Release 2000,
65, 121-131. Liu, M.; Kono, K.; Freche´t, J . M. J . J . Polym. Chem. A
1999, 37, 3492-3503. Balogh, L.; Swanson, D. R.; Tomalia, D. A.;
Hagnauer, G. L.; McManus, A. T. Nano Lett. 2001, 1, 18-21.
(22) Newkome, G.; Moorefield, C. N.; Baker, G. R.; Saunders: M.
J .; Grossman, S. H. Angew. Chem., Int. Ed. Engl. 1991, 30, 1178-
1180. Tomalia, D. A., Baker, H.; Dewald, J .; Hall, M.; Kallos, G.;
Martin, S.; Roeck, J .; Ryder, J .; Smith, P. Polymer J . 1985, 17, 117-
132.
(23) Chai, M. H.; Niu, Y. H.; Youngs, W. J .; Rinaldi, P. L. J . Am.
Chem. Soc. 2001, 123, 4670-4678. Recker, J .; Tomcik, D. J .; Parquette,
J . R. J . Am. Chem. Soc. 2000, 122, 10298-10307. Huang, B.; Parquette,
J . R. Org. Lett. 2000, 2, 239-242.
248 J . Org. Chem., Vol. 68, No. 2, 2003