TABLE 1. Im id a zole (1a )-Ca ta lyzed Rea ction s of
Cyclop en ten on e w ith p-Nitr oben za ld eh yd e in Va r iou s
H2O Solu tion sa
Rem a r k a ble Ra te Acceler a tion of
Im id a zole-P r om oted Ba ylis-Hillm a n
Rea ction In volvin g Cyclic En on es in Ba sic
Wa ter Solu tion
entry
solution
1 M Na2CO3
satd NaHCO3
1 M Na HCO3
1 M NaH2PO4-Na2HPO4
H2O
1 M NaCl
1 M NaH2PO4-Na2HPO4
1 M NaH2PO4-Na2HPO4
1 M NaH2PO4-Na2HPO4
pH
time (h) yieldb (%)
1
2
3
4
5
6
7
8
9
11.9
8.9
8.6
7.3
7.0
7.0
6.8
6.5
5.9
10 min
40 min
1.5
53c
72c
Sanzhong Luo,† Peng George Wang,§ and
J in-Pei Cheng*,†,‡
88
20
87
1.5
48
Center for Molecular Science, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100080, China,
Department of Chemistry, State Key Laboratory of
Elemento-organic Chemistry, Nankai University,
Tianjin, 300071, China, and Department of Chemistry,
Wayne State University, Detroit, Michigan 48202
12
27
27
27
90
64 (88)d
60 (92)d
29 (91)d
a
Reaction were carried out on a 0.5 mmol scale in 2 mL of
water solution and 0.5 mL of THF, molar ratio of aldehyde/
b
cyclopentenone/catalyst ) 1.0:1.5:1.0. Isolated yield based on
jpcheng@nankai.edu.cn
d
aldehyde. c Decomposition of materials was observed. Yield based
on recovered aldehyde.
Received September 12, 2003
to promote the reaction of cyclic enones, and in some
cases, good results were obtained.6 In previous studies,
we found that imidazole can catalyze the Baylis-Hillman
reaction involving cyclic enones in aqueous THF solu-
tion.7 In our continued efforts, we found that the reaction
could be greatly accelerated by adjusting the pH value
Ab st r a ct : The Baylis-Hillman reaction of cyclic enones
was greatly accelerated in basic water solution with imida-
zoles as catalysts, which resulted in short reaction time, high
yields, and expanding substrate scopes. Bicarbonate solution
was shown to be the optimal reaction medium for the
reaction in this study. The apparent “enhanced basicity” of
imidazoles accounted for the rate increase in alkaline
solution.
(2) Ultrasound: (a) Roos, G. H. P.; Rampersadh, P. Synth. Commun.
1993, 23, 1261. (b) Almeida, W. P.; Coelho, F. Tetrahedron Lett. 1998,
39, 8609. (c) Coelho, F.; Almeida, W. P.; Veronese, D.; Mateus, C. R.;
Lopes, E. C. S.; Rossi, R. C.; Silveira, G. P. C.; Pavam, C. H.
Tetrahedron 2002, 58, 7437. Microwave: (c) Kundu, M. K.; Mukherjee,
S. B.; Balu, N.; Padmakumar, R.; Bhat, S. V. Synlett 1994, 444. (d)
Cablewski, T.; Faux, A. F.; Strauss, C. R. J . Org. Chem. 1994, 59, 3408.
High pressure: (e) Hayashi, Y.; Okada, K.; Ashimine, I.; Shoji, M.
Tetrahedron Lett. 2002, 43, 8683. (f) Schuurman, R. J . W.; vander-
Linden A.; Grimbergen, R. P. F.; Nolte, R. J . M.; Scheeren, H. W.
Tetrahedron 1996, 54, 8307. (g) Hill, J . S.; Isaacs, M. S. Tetrahedron
Lett. 1986, 27, 5007. Low temperature: (h) Rafel, S.; Leahy, J . W. J .
Org. Chem. 1997, 62, 1521. Lewis acid: (i) Kawamura, M.; Kobayashi,
S. Tetrahedron Lett. 1999, 40, 1539. (j) Aggarval, V. K.; Mereu, A.;
Farver, G. J .; McCague, R. J . Org. Chem. 1998, 63, 7183. (k) Kataoka,
T.; Iwama, T.; Tsujiyama, S. Chem. Commun. 1997, 197. (l) Shi, M.;
J iang, J .-K.; Feng, Y.-S. Org. Lett. 2000, 2, 2397. For other examples,
see: (m) Aggarwal, V. K.; Mereu, A. Chem. Commun. 1999, 2311. (n)
Lee, W.-D.; Yang, K.-S.; Chen, K. Chem. Coummn. 2001, 1612. (o)
Anthony, P. M. R.; Clifford, A. A.; Rayner, C. M. Chem. Commun. 2002,
968. (p) Rosa, J . N.; Afonso, C. A. M.; Santos, A. G. Tetrahedron Lett.
2001, 57, 4189.
(3) (a) Byun, H. S.; Reddy, K. C.; Bittman, R. Tetrahedron Lett. 1994,
35, 1371. (b) Auge, J .; Lubin, N.; Lubineau, A. Tetrahedron Lett. 1994,
35, 7947. (c) Rezgui, F.; El Gaied, M. M. Tetrahedron lett. 1998, 39,
5965.
(4) (a) Yu, C.; Liu, B.; Hu, L.J . Org. Chem. 2001, 66, 5413. (b) Yu,
C.; Hu, L. J . Org. Chem. 2002, 67, 219. (c) Cai, J .; Zhou, Z.; Zhao, G.;
Tang, C. Org. Lett. 2002, 4, 4723.
(5) (a) Aggarwal, V. K.; Dean, D. K.; Mereu, A.; Williams, R. J . Org.
Chem. 2002, 67, 510. (b) Aggarwal, V. K.; Emme, I.; Fulford, S. Y. J .
Org. Chem. 2003, 68, 692.
The Baylis-Hillman reaction, which involves the
coupling of Michael acceptors with carbon electrophiles
under the catalysis of a tertiary amine or phosphine, has
drawn increasing attention during the past decades.1 The
resulting densely functionalized products allow numerous
transformations and have versatile utilities in organic
synthesis. To improve the applicability of Baylis-Hill-
man reactions, a variety of methods including physical
as well as chemical attempts have been explored toward
enhancement of reaction rate and extension of substrates
scope.2 Among these methods, the use of aqueous solution
as reaction medium has been the recent research focus.3
Hu and co-workers demonstrated that the Baylis-
Hillman reaction of methyl acrylate and acrylamide could
be accelerated simply by conducting the reaction in
aqueous dioxane solution.4 Most recently, Aggarval showed
that the use of Yb(OTf)3 could produce further accelera-
tion in water or formamide.5 In an earlier report, Auge´
examined the salt effect in aqueous Baylis-Hillman
reaction.3b However, few reports have dealt with the
effect of pH on the reaction.
(6) For examples, see: (a) Li, G. G.; Wei, H. X.; Gao, J . J .; Caputo,
T. D. Tetrahedron Lett. 2000, 41, 1. (b) Sugahara, T.; Ogasawara, K.
Synlett 1999, 419. (c) Kataoka, T.; Iwama, T.; Tsujiyama, S.; Iwamura,
T.; Watanabe, S. Tetrahedron 1998, 54, 11813. (d) Yamada, Y. M. A.;
Ikegami, S. Tetrahedron Lett. 2000, 41, 2165. (e) Pei, W.; Wei, H.-X.;
Li, G. G. Chem. Commun. 2002, 2412. (e) Basavaiah, D.; Sreenivasulu,
B.; Rao, A. J . J . Org. Chem. 2003, 68, 5983. (f) Patra, A.; Batra, S.;
J oshi, B. S.; Roy, R.; Kundu, B.; Bhaduri, A. P. J . Org. Chem. 2002,
67, 5783. (g) Shi, M.; Xu, Y.-M.; Zhao, G.-L.; Wu, X.-F. Eur. J . Org.
Chem. 2002, 3666.
â-Substituted enones have been considered less reac-
tive in Baylis-Hillman reactions.1a The reaction of cyclic
enones is sluggish or does not occur at all under tradi-
tional conditions. Various catalysts have been developed
† Chinese Academy of Sciences.
‡ Nankai University.
§ Wayne State University.
(1) (a) Ciganek, E. Org. React. 1997, 51, 201. (b) Langer, P. Angew.
Chem., Int. Ed. 2000, 39, 3049. (c) Basavaiah, D.; Rao, A. J .;
Satyanarayana, T. Chem. Rev. 2003, 103, 811.
(7) (a) Luo, S. Z.; Zhang, B.; He, J .; J anczuk, A.; Wang, P. G.; Cheng,
J .-P. Tetrahedron Lett. 2002, 43, 7369. (b) Catri, R.; El Gaied, M. M.
Tetraheron Lett. 2002, 43, 7835.
10.1021/jo035345p CCC: $27.50 © 2004 American Chemical Society
Published on Web 12/20/2003
J . Org. Chem. 2004, 69, 555-558
555