PAPER
Synthesis of 2,6-Disubstituted 3,4-Dihydropyrimidin-4(3H)-ones
1839
Table 8 MS, IR and NMR Data of Pyrimidines 25 and 28, and 2-Substituted Pyrimidin-4(3H)-ones 26 and 29
Prod-
uct
MS
IR (KBr)
cm–1
1H NMR (CDCl3/TMS)
, J (Hz)
13C NMR (CDCl3/TMS)
m/z (%)a
25a
152 ([M]·+, 6), 111 (21), 2980, 2934, 1576, 1451, 1.37 [d, 6 H, J = 6.4, CH(CH3)2], 21.7, 25.9 (2 q, 3 CH3), 68.7 (d,
110 (83), 95 (35), 94
(100), 93 (27), 82 (71),
69 (32)
1313, 1110, 1035, 986,
968, 829
2.57 (s, 3 H, CH3), 5.40 (m, 1 H, CH), 105.6 (d, CHpyrim), 156.9 (d,
J = 6.4, CH), 6.45 (d, 1 Hpyrim
J = 5.8), 8.29 (d, 1 Hpyrim, J = 5.8)
,
CHpyrim), 167.9, 168.6 (2 s, 2 Cpyrim
)
25b
228 ([M]·+, 31), 213
2980, 2932, 1584, 1549, 1.42 [d, 6 H, J = 6.2, CH(CH3)2],
21.9, 26.2 (2 q, 3 CH3), 68.8 (d,
(94), 187 (36), 186 (92), 1452, 1391, 324, 1210,
185 (100), 170 (94), 158 1111, 1052, 926, 695
(83), 129 (87), 128 (66),
2.70 (s, 3 H, CH3), 5.49 (m, 1 H, CH), 100.9 (d, CHpyrim), 127.0,
J = 6.2, CH), 6.88 (s, 1 Hpyrim),
128.7, 130.1 (3 d, 5 CHarom), 137.5
(s, Carom), 164.9, 168.0, 169.8 (3 s, 3
Cpyrim
7.40–7.50 (m, 3 Harom), 8.00–8.05
104 (72), 102 (94)
(m, 2 Harom
)
)
26a
26b
28a
110 ([M]·+, 100), 95 (5), 3088, 3007, 2926, 2849, 2.36 (s, 3 H, CH3), 6.23 (d, 1 Hpyrim
,
21.3 (q, CH3), 112.8 (d, CHpyrim),
93 (3), 82 (32), 81 (9)
2766, 1681, 1602, 1467, J = 6.0), 7.89 (d, 1 Hpyrim, J = 6.0),
1422, 1307, 1219, 1096, 12.50 (br, NH)b
978, 929, 850
154.4 (d, CHpyrim), 160.0, 162.3 (2 s,
b
2 Cpyrim
)
186 ([M]·+, 100), 185
2990, 2868, 2845, 1655, 2.38 (s, 3 H, CH3), 6.72 (s, 1 Hpyrim), 21.7 (q, CH3), 106.8 (d, CHpyrim),
(64), 158 (25), 117 (19), 1612, 1184, 1120, 858,
7.40–7.50 (m, 3 Harom), 8.00–8.05
126.9, 128.8, 130.5 (3 d, 5 CHarom),
104 (33), 89 (13), 77
(16)
781, 693
(m, 2 Harom), 12.40 (br, NH)b
136.5 (s, Carom), 159.3, 160.7, 163.2
b
(3 s, 3 Cpyrim
)
291 ([M]·+, 2), 191 (56), 3297br, 2980, 2934,
1.39 [d, 6 H, J = 6.2, CH(CH3)2],
21.8, 28.2 (2 q, 5 CH3), 37.1 (t,
190 (27), 176 (21), 149 1714, 1574, 1421, 1375, 1.56 (s, 9 H, t-C4H9) 2.18 (t, 1 H, CH2), 69.6 (d, CH), 70.2, 80.4, 82.1
(94), 148 (100), 133
(21), 121 (94), 120 (53) 1105, 982, 934, 830
1319, 1236, 1157, 1105, J = 2.4, NH), 4.68 (d, 2 H, J = 2.4,
(3 s, 3 C), 104.1 (d, CHpyrim), 152.6
(s, C=O), 157.8 (d, CHpyrim), 159.2,
CH2), 5.38 (m, 1 H, J = 6.2, CH),
6.40 (d, 1 Hpyrim, J = 5.8), 8.37 (d, 1 169.2 (2 s, 2 Cpyrim
Hpyrim, J = 5.8)
)
28b
29a
29b
267 ([M + 1]+, 21), 266 3297br, 2980, 2933,
(70), 252 (17), 225 (37), 1712, 1581, 1554, 1498, 1.61 (s, 9 H, t-C4H9) 2.20 (t, 1 H,
1.44 [d, 6 H, J = 6.2, CH(CH3)2],
22.0, 28.3 (2 q, 5 CH3), 37.2 (t,
CH2), 69.6 (d, CH), 70.2, 80.6, 81.9
(3 s, 3 C), 99.1 (d, CHpyrim), 127.0,
128.7, 130.5 (3 d, 5 CHarom), 136.9
(s, Carom), 153.1 (s, C=O), 159.2,
224 (100), 182 (36)
1454, 1434, 1390, 1368, J = 2.4, NH), 4.80 (d, 2 H, J = 2.4,
1329, 1249, 1215, 1157, CH2), 5.48 (m, 1 H, J = 6.2, CH),
1104, 995, 935, 854
6.84 (s, 1 Hpyrim), 7.45–7.50 (m, 3
Harom), 8.05–8.10 (m, 2 Harom
)
165.1, 170.4 (3 s, 3 Cpyrim
)
150 ([M + 1]+, 20), 149 3117, 2957, 2869, 1649, 1.90–1.95 (m, 1 H, NH), 2.50-2.60 29.3 (t, CH2), 73.9, 81,7 (2 s, C C),
([M]·+, 100), 121 (25)
1589, 1508, 1459, 1382, (m, 2 H, CH2), 6.0 (d, 1 Hpyrim
,
107.4, 157.2 (2 d, 2 CHpyrim), 161.8,
1302, 818
J = 6.0), 6.79 (s, 1 H, NH), 8.19 (d, (s, Cpyrim), 162.1 (s, C=O)b
1 Hpyrim, J = 6.0), 12.0 (br s, 1 H,
NH)b
225 ([M]·+, 100), 224
3354, 3209, 3068, 2971, 3.25–3.30 (m, 1 H, NH), 4.25–4.30 30.0 (t, CH2), 73.1, 81.3 (2 s, C C),
(45), 207 (41), 197 (58), 2932, 2845, 1665, 1618, (m, 2 H, CH2), 6.32 (s, 1 Hpyrim),
196 (22), 129 (30), 102 1452, 1418, 1285, 1254, 6.94 (t, 1 H, J = 6.0, NH), 7.5–7.6
98.2 (d, CHpyrim), 126.7, 128.4,
130.1 (3 d, 5 CHarom), 137.0 (s,
(38), 77 (30)
984, 826, 721
(m, 3 Harom), 8.1–8.15 (m, 2 Harom), Carom), 153.9, 161.6, 163.4 (3 s, 3
b
11.10 (br s, 1 H, NH)b
Cpyrim)
a Taken in the EI (70 eV) mode.
b NMR recorded in DMSO-d6.
be effected with a high degree of selectivity. Furthermore, the cleavage of the 4-isopropoxy group in pyrimidines of
this thioether linkage at the 2-position in 4-isopropoxypy- type 22, 25, 28 and even in those of type 31 is of remark-
rimidines of type 18 can be activated through the forma- able importance for the successful accomplishment of the
tion of the corresponding sulfones 20 toward a subsequent synthesis of pyrimidinones of type 3. The methodology
nucleophilic heteroaromatic ipso-substitution reaction described herein should also be useful for the synthesis of
with a wide variety of nucleophiles (e.g. N-, C-, and O-nu- more elaborated, biologically relevant pyrimidine-4(3H)-
cleophiles). This latter reaction allows the introduction of one derivatives. Synthetic studies along this line are being
additional molecular diversity over the heterocyclic nu- pursued in our laboratory and the results will be published
cleus. Finally the high degree of selectivity observed for in due course.
Synthesis 2002, No. 13, 1833–1842 ISSN 0039-7881 © Thieme Stuttgart · New York