2,5-diarylpyrroles
189
3
using direct methods and standard difference
map techniques, and were refined by full-matrix
least-squares procedures on F2 with SHELXTL
(Version 5.03).12 All hydrogen atoms were lo-
cated and refined.
7.04 [d, JH-H = 7.8, 2 m-H of 2 Xyl], 7.08
3
[s, 2 m-H of Xyl], 7.28 [d, JH-H = 7.8, 2 o-
H of 2 Xyl], 8.21 [br s, NH]. 13C{ H} NMR
1
(CDCl3): 21.0 [2 p-CH3 of 2 Xyl], 21.3 [2 o-
CH3 of 2 Xyl], 109.4 [2 C of N(C4Xyl2H2)
(CH)], 126.8 [2 m-C of 2 Xyl (CH)], 127.7
[2 o-C of 2 Xyl (CH)], 129.9 [2 ipso-C of 2 Xyl
(quarternary)], 131.4 [2 C of N(C4Xyl2H2 (quar-
ternary)], 131.9 [2 m-C of 2 Xyl (CH)], 134.7 [2
o-C of 2 Xyl (quarternary)], 136.4 [2 p-C of 2 Xyl
(quarternary)].
Conclusions
2,5-Di(2,4-xylyl)pyrrole, [pyr2,5-Xyl ]H, has
2
been synthesized by reaction of the dike-
tone [XylC(O)CH2]2 with NH4OAc in AcOH.
The molecular structures of [pyr2,5-Ph ]H and
2
[pyr2,5-Xyl ]H indicate that an ortho methyl sub-
2
X-ray Structure Determinations
stituent increases the dihedral angle between
the aryl and pyrrolyl groups from 14.5 in
Crystals of [pyr2,5-Ph ]H and [pyr
]H
2,5-Xyl
2
2
2,5-Xyl
[pyr2,5-Ph ]H to 24.1 in [pyr
]H.
2
2
were obtained from benzene and CDCl3, re-
spectively. X-ray diffraction data were collected
on a Bruker P4 diffractometer equipped with a
SMART CCD detector, and crystal data, data
collection, and refinement parameters are sum-
marized in Table 3. The structures were solved
Acknowledgment
We thank the National Science Foundation
(CHE 99-87432) for support of this research.
Table 3. Crystal, Intensity Collection, and Refinement Data
References
[pyr2,5-Ph2 ]H
[pyr2,5-Xyl ]H
2
1. Kuhn, N. Bull. Soc. Chim. Belg. 1990, 99, 707–715; Zakrzewski,
J. Heterocycles 1990, 31, 383–396; Kershner, D.L.; Basolo, F.
Coord. Chem. Rev. 1987, 79, 279–292; Pannell, K.H.; Kalsotra,
B.L.; Parkanyi, C. J. Heterocyclic Chem. 1978, 15, 1057–1081;
Nief, F. Eur. J. Inorg. Chem. 2001, 891–904; Sadimenko, A.P.;
Garnovskii, A.D.; Retta, N. Coord. Chem. Rev. 1993, 126, 237–
318.
2. Westerhausen, M.; Wieneke, M.; No¨th, H.; Seifert, T.; Pfitzner,
A.; Schwarz, W.; Schwarz, O.; Weidlein, J. Eur. J. Inorg. Chem.
1998, 1175–1182.
3. Bynum, R.V.; Zhang, H.M.; Hunter, W.E.; Atwood, J.L. Can. J.
Chem. 1986, 64, 1304–1307.
4. Dias, A.R.; Galva˜o, A.M.; Galva˜o, A.C.; Salema, M.S. J. Chem.
Soc., Dalton Trans. 1997, 1055–1061; Dias, A.R.; Galva˜o,
A.M.; Galva˜o, A.C. Collect. Czech. Chem. Comm. 1998, 63,
182–186.
Lattice
Formula
CCDC deposit no.
Formula weight
Space group
Monoclinic
Monoclinic
C20H21N
C
16H13
N
CCDC-1003/6141 CCDC-1003/6142
219.17
P21/n
7.475(1)
5.967(1)
26.301(5)
93.715(4)
1170.6(4)
4
233
0.71073
1.244
0.072
28.3
275.38
C2/c
˚
a/A
47.431(3)
5.2104(4)
12.7162(10)
97.817(1)
3113.4(4)
8
243
0.71073
1.175
0.068
28.3
9807
3502
˚
b/A
˚
c/A
/
3
˚
V/A
Z
Temperature (K)
Radiation ( , A)
˚
3
(calcd.), g cm
(Mo K ), mm
max, deg.
Total no. of data
No. of data
Rmerge
No. of parameters
R1
wR2
GOF
5. Kuhn, N.; Stubenrauch, S.; Boese, R.; Bla¨ser, D. J. Organomet.
Chem. 1992, 440, 289–296.
1
6. Schumann, H.; Rosenthal, E.C.E.; Winterfeld, J.; Weimann,
R.; Demtschuk, J. J. Organomet. Chem. 1996, 507, 287–289;
Schumann, H.; Winterfeld, J.; Hemling, H.; Kuhn, N. Chem.
Berichte 1993, 126, 2657–2659; Schumann, H.; Rosenthal,
E.C.E.; Winterfeld, J.; Kociok-Ko¨hn, G. J. Organomet. Chem.
1995, 495, C12–C14.
7. Tanski, J.M.; Parkin, G. Organometallics 2002, 21, 587–589.
8. Patterson, J.M.; Soedigdo, S. J. Org. Chem. 1968, 33, 2057–
2061.
7974
2726
0.0682
207
0.0774
0.2115
1.070
0.0276
275
0.0458
0.0993
1.085