D. A. Clark et al. / Bioorg. Med. Chem. 16 (2008) 3163–3170
3169
1H), 7.03 (dd, 1H), 6.28 (q, 1H), 2.91 (d, 3H). 19F NMR
4.2. Assessment of biological activity
(CDCl3) d À111.35 (t).
Control of cotton/melon aphid (Aphis gossypii Glover).
An open container containing a 6–7-days old cotton
plant was infested with 30–40 aphids and the soil was
subsequently covered with a layer of sand. Compounds
were formulated in a solvent comprising 10% acetone,
90% water, and 300 ppm X-77ꢂ Spreader Low-Foam
Formula non-ionic surfactant and applied in 1 mL vol-
umes through an atomizing sprayer to the test unit.
Good foliar and soil coverage was achieved to allow
for assessment of contact and soil systemic activity,
respectively. Each test was performed in triplicate and
when possible with a 3–5· factor of dilution between
rates. The units were allowed to dry for 1 h before being
capped and held for 6 days at 19–21 ꢁC and 50–70% rel-
ative humidity. The units were then visually inspected
with a stereomicroscope to assess mortality. Probit anal-
yses of the mortality data were used to generate EC50’s
(Table 2). The mortality in the untreated control and
solvent check was ꢀ1% and ꢀ10%, respectively.
1
27: H NMR (CDCl3) d 10.04 (br s, 1H), 8.48 (dd, 1H),
7.88 (dd, 1H), 7.42 (dd, 1H), 7.39 (s, 1H), 6.95 (m, 2H),
6.15 (q, 1H), 2.91 (d, 3H), 2.19 (s, 3H). 19F NMR
(CDCl3) d À62.83, (s), À114.94 (t).
1
28: H NMR (CDCl3) d 9.89 (br s, 1H), 8.45 (dd, 1H),
7.85 (dd, 1H), 7.37 (dd, 1H), 7.10 (s, 1H), 6.95 (m,
2H), 6.17 (q, 1H), 2.94 (d, 3H), 2.19 (s, 3H). 19F
NMR (CDCl3) d À115.08 (t).
1
29: H NMR (CDCl3) d 10.04 (br s, 1H), 8.46 (dd, 1H),
7.87 (dd, 1H), 7.38 (dd, 1H), 7.25–7.20 (m, 2H), 7.04 (s,
1H), 6.21 (q, 1H), 2.98 (d, 3H). 19F NMR (CDCl3) d
À109.35 (d).
1
30: H NMR (DMSO-d6) d 10.8–10.6, (br s, 1H), 8.42
(m, 1H), 8.4 (br m, 1H), 8.03 (ddd, 1H), 7.85 (d, 1H),
7.75 (s, 1H), 7.72 (m, 1H), 7.52 (d, 1H), 2.66 (d, 3H).
À60.71, À126.83 (d,
19F NMR (DMSO-d6)
J = 9.9 Hz).
d
Green peach aphids (Myzus persicae (Sulzer)) were trea-
ted in the same manner using a 12–15 days old radish
plant in place of the cotton plant. In the systemic-only
assay, formulated compounds were applied directly to
the soil, avoiding any direct contact with test species.
The mortality in the untreated control and that in the
solvent check were both ꢀ2%.
1
31: H NMR (DMSO-d6) d 10.54 (s, 1H), 8.38 (d, 1H),
8.34 (br s, 1H); 7.98 (ddd, 1H), 7.85 (d, 1H), 7.66
(ddd, 1H), 7.51 (d, 1H), 7.40 (s, 1H), 2.66 (d, 3H). 19F
NMR (CDCl3) d À126.67 (d).
1
32: H NMR (CDCl3) d 9.39 (br s, 1H), 8.45 (dd, 1H),
7.86 (dd, 1H), 7.38 (dd, 1H), 7.19 (dd, 1H), 7.06 (dd,
1H), 6.72 (d, 1H), 6.21 (br s, 1H), 2.92 (d, 3H). 19F
NMR (CDCl3) d À111.46 (t), À127.13 (d).
34: 1H NMR (CDCl3) d 10.05, (br s, 1H), 8.45 (dd, 1H),
7.85 (dd, 1H), 7.37 (dd, 1H), 7.27 (d, 1H), 7.23 (d, 1H),
6.66 (d, 1H), 6.13 (br m, 1H), 2.96 (d, 3H), 2.20 (s, 3H).
Acknowledgments
We would like to thank Billy Annan, Elaine McClurg,
Molly Waddell, Mary Koechert, and Anna Stoops for
biological testing, Cheryl Bellin for HPLC log P mea-
surements, and John Freudenberger for a generous gift
of compound 20.
35: 1H NMR (DMSO-d6) d 10.31, (s, 1H), 8.37 (m, 1H),
8.25 (br m, 1H), 7.98 (ddd, 1H), 7.65 (ddd, 1H), 7.48 (d,
1H), 7.34 (d, 1H), 7.33 (s, 1H), 2.67 (d, 3H), 2.17 (s, 3H).
19F NMR (DMSO-d6) d À60.66, À127.01 (dd).
36: 1H NMR (CDCl3) d 9.83, (s, 1H), 8.46 (dd, 1H), 7.87
(dd, 1H), 7.38 (dd, 1H), 7.04 (s, 1H), 7.01–6.92 (m, 2H),
6.27–6.16 (br s, 1H), 2.97 (d, 3H), 2.20 (s, 3H). 19F
NMR (CDCl3) d À107.87 (m), À111.05 (m).
37: 1H NMR (CDCl3) d 9.84, (s, 1H), 8.45 (dd, 1H), 7.86
(dd, 1H), 7.37 (dd, 1H), 7.00-6.91 (m, 2H), 6.63 (d, 1H),
6.26 (br q, 1H), 2.95 (d, 3H), 2.20 (s, 3H). 19F NMR
(CDCl3) d À108.22 (t), À110.98 (q), À127.18 (d).
References and notes
1. (a) Lahm, G. P.; Selby, T. P.; Freudenberger, J. H.;
Stevenson, T. M.; Myers, B. J.; Seburyamo, G.; Smith, B.
K.; Flexner, L.; Clark, C. E.; Cordova, D. Bioorg. Med.
Chem. Lett. 2005, 15, 4898; (b) Lahm, G. P.; Stevenson, T.
M.; Selby, T. P.; Freudenberger, J. H.; Cordova, D.;
Flexner, L.; Bellin, C. A.; Dubas, C. M.; Smith, B. K.;
Hughes, K. A.; Hollingshaus, J. G.; Clark, C. E.; Benner,
E. A. Bioorg. Med. Chem. Lett. 2007, 17, 6274.
2. Cordova, D.; Benner, E. A.; Sacher, M. A.; Rauh, J. J.;
Sopa, J. S.; Lahm, G. P.; Selby, T. P.; Stevenson, T.
M.; Flexner, L.; Gutteridge, S.; Rhoades, D. F.; Wu, L.;
Smith, R. M.; Tao, Y. Pestic. Biochem. Physiol. 2006,
84, 196.
3. Vilarrasa, J.; Galvez, C.; Calafell, M. Anal. Quim. 1975, 71,
631; Reimlinger, H.; Van Overstraeten, A. Chem. Ber. 1966,
99, 3350.
4. (a) Freudenberger, J. H.; Lahm, G. P.; Selby, T. P.;
Stevenson, T. M., WO 2003016283, 2003.; (b) Annis, G. D.,
WO 2004011453, 2004.
Log P’s were calculated using Biobyte c log P software.
Measured values were determined on a 2.1 mm ·
50 mm Zorbax SB C18 column at 40 ꢁC using a flow
rate of 1.0 mL/min with a gradient from 99% 5 mM
ammonium acetate, pH 7, buffer to 99% 5 mM ammo-
nium acetate in acetonitrile over 5 min. Retention times
were compared with a calibration curve created from
retention times of compounds with known values of
shake-flask octanol–water partition coefficients (P) in
the same system.
5. For selected fluorinations with AgF, see: Mitsch, R. A.;
Ogden, P. A. J. Org. Chem. 1966, 31, 3833; Josey, A. D.;
Dickinson, C. L., Jr.; Dewhirst, K. C.; McKusick, B. C. J.
Org. Chem. 1967, 32, 1941; Studentsov, E. P.; Ivin, B. A.;