352 J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 3
Letters
(14) Wang, Z.; Canagarajah, B. J .; Boehm, J . C.; Kassisa, S.; Cobb,
M. H.; Young, P. R.; Abdel-Meguid, S.; Adams, J . L.; Goldsmith,
E. J . Structural basis of inhibitor selectivity in MAP kinases.
Structure 1998, 6, 1117 and references therein.
(15) Lisnock, J . M.; Tebben, A.; Frantz, B.; O’Neill, E. A.; Croft, G.;
O’Keefe, S. J .; Li, B.; Hacker, C.; De Laszlo, S.; Smith, A.; Libby,
B.; Liverton, N.; Hermes, J .; LoGrasso, P. Molecular basis for
p38 protein kinase inhibitor specificity. Biochemistry 1998, 37,
16573 and references therein.
in human whole blood. Analogue 6 was evaluated ex
vivo in mice, providing 42% inhibition of mMAPKAP
activity and further validating this class of p38 inhibi-
tors. Relative to the clinically used VX-745 (3), analogue
6 displayed similar efficacy in this pharmacodynamic
mouse model.
(16) p38 G110A and G110D mutants support this observation.
Fitzgerald, C. E.; O’Keefe, S. J .; Scapin, G.; et al. Manuscript in
preparation. Scapin, G. Selectivity in homologous protein fami-
lies: protein kinase inhibition. Protein Kinases as Therapeutic
Targets in Drug Discovery and Development. Presented in
Cambridge, U.K., October 28-29, 2002. Kinase selectivity of p38
over J NK can also be achieved through exploiting the larger
hydrophobic pocket of p38R at T106 versus the smaller hydro-
phobic pocket of J NK, which has a methionine residue in this
position.14,15
(17) Salituro, F. G. Presented at the 27th National Medicinal
Chemistry Symposium; Kansas City, MO, J une 13-17, 2000.
(18) Lubsen, J .; J ust, H.; Hjalmarsson, A. C.; La Framboise, D.;
Remme, W. J .; Heinrich-Nols, J .; Dumont, J . M.; Seed, P. Effect
of pimobendan on exercise capacity in patients with heart
failure: main results from the pimobendan in congestive heart
failure (PICO) trial. Heart 1996, 76, 223.
(19) Claiborne, C. F.; Claremon, D. A.; Liverton, N. J .; Nguyen, K.
T. (Merck & Co., Inc.). Substituted imidazoles having cytokine
inhibitory activity. Patent WO 01/22965, 2001. Revesz, L.
(Novartis AG). Thiazole and imidazo[4,5-B]pyridine compounds
and their pharmaceutical use. Patent WO 01/30778, 2001. Dodd,
J . H.; Henry, J . R.; Rupert, K. C. (Ortho-McNeil Pharmaceutical,
Inc.). Substituted 2-aryl-3-(heteroaryl)-imidazo[1,2-a]pyrim-
idines and related pharmaceutical compositions and methods.
Patent WO 01/34605, 2001.
(20) Comparable to imidazole (pKa ) 7.0), the pKa for imidazo[1,2-
a]pyridine is 6.8. Gilchrist, T. L. Heterocyclic Chemistry, 3rd ed.;
Addison-Wesley Longman Ltd.: Harlow, U.K., 1997; p 298.
J oule, J . A.; Mills, K.; Smith, G. F. Heterocyclic Chemistry, 3rd
ed.; Stanley Thornes Ltd.: England, 1998; p 437. Albumin,
although not exclusive, is a major constituent in whole blood
and is a highly lipophilic and lysine-rich basic protein. van de
Waterbeemd, H.; Smith, D. A.; Beaumont, K.; Walker, D. K.
Property-based design: optimization of drug absorption and
pharmacokinetics. J . Med. Chem. 2001, 44, 1313.
(21) Murray, W. V.; Wachter, M. P. Synthesis and properties of aryl-
1,3-dioxo carboxylic acids. J . Org. Chem. 1990, 55, 3424.
(22) Trapani, G.; Franco, M.; Ricciardi, L.; Latrofa, A.; Genchi, G.;
Sanna, E.; Tuveri, F.; Cagetti, E.; Biggio, G.; Liso, G. Synthesis
and binding affinity of 2-phenylimidazo[1,2-a]pyridine deriva-
tives for both central and peripheral benzodiazepine receptors.
A new series of high-affinity and selective ligands for the
peripheral type. J . Med. Chem. 1997, 40, 3109.
(23) Williams, J . M.; J obson, R. B.; Yasuda, N.; Marchesini, G.;
Dolling, U.-H.; Grabowski, E. J . J . A new general method for
preparation of N-methoxy-N-methylamides. Application in direct
conversion of an ester to a ketone. Tetrahedron Lett. 1995, 36,
5461.
(24) The observed IC50 shifts from enzyme inhibition to the THP-1
cellular assay to the suppression of TNFR in whole blood were
partly attributed to protein binding in these functional assays.
Serum protein binding measurements with related structural
classes supported this hypothesis.
(25) Salituro, F. G.; Bemis, G. W.; Cochran, J . E. (Vertex Pharma-
ceuticals, Inc.). Inhibitors of p38. Patent WO 99/64400, 1999.
(26) It is speculated that the smaller o-fluorine atom of 19 and 28
allows the rotation of the aryl ring into the plane of the
imidazopyridine, both moieties of which may delocalize π-elec-
tron density more easily into the oxidized pyridazinone ring and
N-aryl moiety. This increased planarity, based on a lowered
ground-state energy of the molecule, could result in a higher
energy barrier toward enzyme binding conformation that re-
quires orthogonal aryl rings (Figure 2).
Su p p or tin g In for m a tion Ava ila ble: Methods for molec-
ular modeling, experimental procedures for compound prepa-
ration and characterization data, biological assay protocols,
and liver microsome stability plots. This material is available
Refer en ces
(1) Pugsley, M. K. Etanercept: Immunex. Curr. Opin. Invest. Drugs
2001, 2, 1725.
(2) Bondeson, J .; Maini, R. N. Tumour necrosis factor as a thera-
peutic target in rheumatoid arthritis and other chronic inflam-
matory diseases: The clinical experience with infliximab. Rem-
icade. Int. J . Clin. Pract. 2001, 55, 211.
(3) Chen, Z.; Gibson, T. V.; Robinson, F.; Silvestro, L.; Pearson, G.;
Xu, B.; Wright, A.; Vanderbilt, C.; Cobb, M. H. MAP kinases.
Chem. Rev. 2001, 101, 2449.
(4) Ono, K.; Han, J . H. The p38 signal transduction pathway:
Activation and function. Cell. Signalling 2000, 12, 1.
(5) J iang, Y.; Gram, H.; Zhao, M.; New, L.; Gu, J .; Feng, L.; Di
Padova, F.; Ulevitch, R. J .; Han, J . Characterization of the
structure and function of the fourth member of p38 group
mitogen-activated protein kinases: p38δ. J . Biol. Chem. 1997,
272, 30122 and references therein.
(6) Gallagher, T. F.; Seibel, G. L.; Kassis, S.; Laydon, J . T.;
Blumenthal, M. J .; Lee, J . C.; Lee, D.; Boehm, J . C.; Fier-
Thompson, S. M.; Abt, J . W.; Soreson, M. E.; Smietana, J . M.;
Hall, R. F.; Garigipati, R. S.; Bender, P. E.; Erhard, K. F.; Krog,
A. J .; Hofmann, G. A.; Sheldrake, P. L.; McDonnell, P. C.;
Kumar, S.; Young, P. R.; Adams, J . L. Regulation of stress-
induced cytokine production by pyridinylimidazoles. Inhibition
of CSBP kinase. Bioorg. Med. Chem. 1997, 5, 49.
(7) Liverton, N. J .; Butcher, J . W.; Claiborne, C. F.; Claremon, D.
A.; Libby, B. E.; Nguyen, K. T.; Pitzenberger, S. M.; Selnick, H.
G.; Smith, G. R.; Tebben, A.; Vacca, J . P.; Varga, S. L.; Agarwal,
L.; Dancheck, K.; Forsyth, A. J .; Fletcher, D. S.; Frantz, B.;
Hanlon, W. A.; Harper, C. F.; Hofsess, S. J .; Kostura, M.; Lin,
J .; Luell, S.; O’Neill, E. A.; Orevillo, C. J .; Pang, M.; Parsons, J .;
Rolando, A.; Sahly, Y.; Visco, D. M.; O’Keefe, S. J . Design and
synthesis of potent, selective and orally bioavailable tetrasub-
stituted imidazole inhibitors of p38 mitogen-activated protein
kinase. J . Med. Chem. 1999, 42, 2180.
(8) Bemis, G. W.; Salituro, F. G.; Duffy, J . P.; Cochran, J . E.;
Harrington, E. M.; Murcko, M. A.; Wilson, K. P.; Su, M.; Galullo,
V. P. (Vertex Pharmaceuticals, Inc.). Substituted nitrogen
containing heterocycles as inhibitors of p38 protein kinase.
Patent WO 98/27098, 1998.
(9) Salituro, F. G. VX-745. Presented at the 11th RSC-SCI Medicinal
Chemistry Symposium, Churchill College, Cambridge, U.K.,
September 9-12, 2001.
(10) Boehm, J . C.; Adams, J . L. New inhibitors of p38 kinase. Expert
Opin. Ther. Pat. 2000, 10, 25.
(11) Vertex press release (News Wire, September 24, 2001): Vertex
moves to re-allocate resources from VX-745 in p38 MAP kinase
program to accelerate development of second generation drug
candidates VX-702 and VX-850.
(12) Stelmach, J . E.; Liu, L.; Patel, S. B.; Pivnichny, J . V.; Scapin,
G.; Singh, S. B.; Hop, C. E. C. A.; Wang, Z.; Strauss, J . R.;
Cameron, P. M.; Nichols, E. A.; O’Keefe, S. J .; O’Neill, E. A.;
Schmatz, D. M.; Schwartz, C. D.; Thompson, C. M.; Zaller, D.
M.; Doherty, J . B. Design and synthesis of potent, orally
bioavailable dihydroquinazolinone inhibitors of p38 MAP kinase.
Bioorg. Med. Chem. Lett. 2003, 13, 277.
(13) See Supporting Information for modeling details. Since the
glycine-rich loop of p38 (containing Val30 and Tyr35) is known
to change conformation significantly, depending on the inhibitor
in the active site, the structure of p38 used here is only an
approximation of the active site for 6. Furthermore, it appears
that the protein would need to adjust at Val30 to accommodate
the tolyl moiety of 6.
(27) Blood plasma concentrations of 3 and 6 were calculated by
bioassay. The free compound p38 inhibition IC50 is multiplied
by 1 over the dilution factor of the plasma required to reach 50%
inhibition in the p38 assay (EC50). This method does not address
active metabolites.
J M025585H