Published on Web 09/25/2002
Efficient Incorporation of a Copper Hydroxypyridone Base
Pair in DNA
Kentaro Tanaka,† Atsushi Tengeiji,† Tatsuhisa Kato,‡ Namiki Toyama,‡
Motoo Shiro,§ and Mitsuhiko Shionoya*,†
Contribution from the Department of Chemistry, Graduate School of Science,
The UniVersity of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan,
Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan, and
Rigaku Corporation, 3-9-12 Matsubaracho, Akishima, Tokyo 196-8666, Japan
Received June 5, 2002
Abstract: Recently, we reported the first artificial nucleoside for alternative DNA base pairing through metal
complexation (J. Org. Chem. 1999, 64, 5002-5003). In this regard, we report here the synthesis of a
hydroxypyridone-bearing nucleoside and the incorporation of a neutral Cu2+-mediated base pair of
hydroxypyridone nucleobases (H-Cu-H) in a DNA duplex. When the hydroxypyridone bases are
incorporated into the middle of a 15 nucleotide duplex, the duplex displays high thermal stabilization in the
presence of equimolar Cu2+ ions in comparison with a duplex containing an A-T pair in place of the H-H
pair. Monitoring temperature dependence of UV-absorption changes verified that a Cu2+-mediated base
pair is stoichiometrically formed inside the duplex and dissociates upon thermal denaturation at elevated
temperature. In addition, EPR and CD studies suggested that the radical site of a Cu2+ center is formed
within the right-handed double-strand structure of the oligonucleotide. The present strategy could be
developed for controlled and periodic spacing of neutral metallobase pairs along the helix axis of DNA.
Introduction
base-pairing modes in which hydrogen-bonded base pairs
present in natural DNA are replaced by metal-mediated ones.
Efforts toward the expansion of the genetic alphabet have
been made extensively with respect to artificial gene control as
well as development of functionalized biopolymers.1,2 Recently,
we3 and others4,5 have reported a few examples of alternative
Along this strategy, we have designed a novel hydroxypyridone
nucleobase (H) as a planar bidentate ligand (Chart 1). Since
hydroxypyridone is known to form, with concomitant depro-
tonation, a stable, neutral complex with a divalent transition
metal ion such as Cu2+,6 the resulting square-planar complex
should replace hydrogen-bonded natural base pairs. We report
here the synthesis of hydroxypyridone-bearing nucleoside 1,
efficient incorporation of 1 into oligonucleotides, 2 and 3, and
the influence of a copper-mediated pair of the chelator-type
nucleobases on the thermal stability of the DNA duplex.
* To whom correspondence should be addressed. Phone: +81-3-5841-
† The University of Tokyo.
‡ Institute for Molecular Science.
§ Rigaku Corporation.
(1) (a) Switzer, S.; Moroney, S. E.; Benner, S. A. J. Am. Chem. Soc. 1989,
111, 8322. (b) Piccirilli, J. A.; Krauch, T.; Moroney, S. E.; Benner, S. A.
Nature 1990, 343, 33. (c) Switzer, C. Y.; Moroney, S. E.; Benner, S. A.
Biochemistry 1993, 32, 10489. (d) Horlacher, J.; Hottiger, M.; Podust, V.
N.; Hu¨bscher, U.; Benner, S. A. Proc. Natl. Acad. Sci. U.S.A. 1995, 92,
6329. (e) Lutz, M. J.; Held, H. A.; Hottiger, M.; Hu¨bscher, U.; Benner, S.
A. Nucleic Acids Res. 1996, 24, 1308.
Results and Discussion
A synthetic route for a hydroxypyridone-bearing nucleoside
1 is shown in Scheme 1. A key step was a Lewis acid-catalyzed
coupling reaction7 between fully protected deoxyribofuranose
68 and 2-methyl-3-(benzyloxy)-4-pyridone (7).9 The resulting
mixture of R- and â-anomers 8 (R:â ) 3:7) was used for the
following deprotection without separation. After removal of the
benzyl group, the desired â-N-nucleoside 9 was successfully
isolated by recrystallization from EtOH, and its anomeric
configuration was determined by X-ray crystal analysis (Figure
(2) (a) Kool, E. T. Biopolymers 1998, 48, 3. (b) Guckian, K. M.; Krugh, T.
R.; Kool, E. T. Nat. Struct. Biol. 1998, 11, 954. (c) Kool, E. T.; Morales,
J. C.; Guckian, K. M. Angew. Chem., Int. Ed. 2000, 39, 990. (d) McMinn,
D. L.; Ogawa, A. K.; Wu, Y.; Liu, J.; Schultz, P. G.; Romesberg, F. E. J.
Am. Chem. Soc. 1999, 121, 11585. (e) Ogawa, A. K.; Wu, Y.; McMinn,
D. L.; Liu, J.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc. 2000,
122, 3274. (f) Wu, Y.; Ogawa, A. K.; Berger, M.; McMinn, D. L.; Schultz,
P. G.; Romesberg, F. E. J. Am. Chem. Soc. 2000, 122, 7621. (g) Brotschi,
C.; Ha¨berli, A.; Leumann, C. J. Angew. Chem., Int. Ed. 2001, 40, 3012.
(3) (a) Tanaka, K.; Shionoya, M. J. Org. Chem. 1999, 64, 5002. (b) Cao, H.;
Tanaka, K.; Shionoya, M. Chem. Pharm. Bull. 2000, 48, 1745. (c) Shionoya,
M.; Tanaka, K. Bull. Chem. Soc. Jpn. 2000, 73, 1945. (d) Tanaka, K.;
Tasaka, M.; Cao, H.; Shionoya, M. Eur. J. Pharm. Sci. 2001, 13, 77. (e)
Tasaka, M.; Tanaka, K.; Shiro, M.; Shionoya, M. Supramol. Chem. 2001,
13, 671. (f) Tanaka, K.; Tasaka, M.; Cao, H.; Shionoya, M. Supramol.
Chem. 2002, 14, 255. (g) Tanaka, K.; Yamada, Y.; Shionoya, M. J. Am.
Chem. Soc. 2002, 124, 8802.
(6) (a) El-Jammal, A.; Howell, P. L.; Turner, M. A.; Li, N.; Templeton, D. M.
J. Med. Chem. 1994, 37, 461. Here the X-ray structure of a square-planar
Cu2+ complex in the trans form is reported. (b) Ahmed, S. I.; Burgess, J.;
Fawcett, J.; Parsons, S. A.; Russell, D. R.; Laurie, S. H. Polyhedron 2000,
19, 129. (c) Griffith, W. P.; Mostafa, S. I. Polyhedron 1992, 11, 2997.
(7) Mao, D. T.; Driscoll, J. S.; Marquez, V. S. J. Med. Chem. 1984, 27, 160.
(8) Gold, A.; Sangaiah, R. Nucleosides Nucleotides 1990, 9, 907.
(9) Harris, R. L. N. Aust. J. Chem. 1976, 29, 1329.
(4) (a) Meggers, E.; Holland, P. L.; Tolman, W. B.; Romesberg, F. E.; Schultz,
P. G. J. Am. Chem. Soc. 2000, 122, 10714. (b) Atwell, S.; Meggers, E.;
Spraggon, G.; Schultz, P. G. J. Am. Chem. Soc. 2001, 123, 12364.
(5) (a) Weizman, H.; Tor, Y. Chem. Commun. 2001, 453. (b) Weizman, H.;
Tor, Y. J. Am. Chem Soc. 2001, 123, 3375.
9
12494
J. AM. CHEM. SOC. 2002, 124, 12494-12498
10.1021/ja027175o CCC: $22.00 © 2002 American Chemical Society