K. Hinterding et al. / Tetrahedron Letters 43 (2002) 8095–8097
8097
References
dropwise below −65°C. The temperature was kept at
−78°C for 0.5 h before the mixture was warmed to 0°C
and stirred for an additional 5 h. Quenching with satd
aqueous NH4Cl (100 ml) was followed by extraction with
ethylacetate (2×150 ml) and drying of the organic phase
with MgSO4. After evaporation of the solvent the crude
oil was purified by chromatography (hexanes/ether=9/1)
to give the desired product as a slowly crystallizing oil
(9.87 g, 22.2 mmol).
1. Brinkmann, V.; Pinschewer, D. D.; Feng, L.; Chen, S.
Transplantation 2001, 72, 764–769.
2. Tedesco, T.; Kahan, B.; Mourad, G.; Vanrenterghem, Y.;
Grinyo, J.; Weimar, W.; Pellet, P.; Chodoff, L.; Sablin-
ski, T. Am. J. Transplant. 2001, 1, S243.
3. Chiba, K.; Yanagawa, Y.; Yasubuchi, Y.; Kataoka, H.;
Kawaguchi, T.; Ohtsuki, M.; Hoshino, Y. J. Immunol.
1998, 160, 5037–5044.
1
11. Analytical data: H NMR (400 MHz, CD3OD): l=0.71
ppm (t, J=7 Hz, 3H, CH2CH3), 0.88 (s, 3H, CCH3),
1.05–1.21 (m, 6H, CH2), 1.21–1.29 (m, 2H, CH2), 1.38–
1.47 (m, 1H, CCH2), 1.47–1.56 (p, J=7 Hz, 2H,
OCH2CH2), 2.35 (t, J=7 Hz, 1H, PhCH2), 3.13 (d, J2=9
Hz, 1H, OCH2), 3.16 (d, J2=9 Hz, 1H, OCH2), 3.71 (t,
J=7 Hz, 2H, PhOCH2), 6.58 (d, J=8 Hz, 2H, arom.
CH), 6.89 (d, J=8 Hz, 2H, arom. CH); MS (EI): 294.5
(MH+); hD −14 (20°C; c 0.98, CHCl3).
4. (a) Brinkmann, V.; Davis, M. D.; Heise, C. E.; Albert,
R.; Cottens, S.; Hof, R.; Bruns, C.; Prieschl, E.; Baum-
ruker, T.; Hiestand, P.; Foster, C. A.; Zollinger, M.;
Lynch, K. R. J. Biol. Chem. 2002, 277, 21453–21457; (b)
Mandala, S.; Hajdu, R.; Bergstrom, J.; Quakenbush, E.;
Xie, J.; Milligan, J.; Thornton, R.; Shei, G. J.; Card, D.;
Keohane, C.; Rosenbach, M.; Hale, J.; Lynch, C. L.;
Rupprecht, K.; Parsons, W.; Rosen, H. Science 2002,
296, 346–349.
12. Alternatively, bis-alkylated Scho¨llkopf adducts 7 can be
synthesized from
with iodide 6.
13. Column: Chiracel OD (25×0.46 cm); Eluent: EtOH/hex-
ane=1/1; UV detection at 210 nm; flow: 1 ml/min;
injection: 20 mL 0.1% in EtOH; ee of (R)-3=95%.
14. Accessible from 3 in 85% yield by treatment with Boc2O
in CH2Cl2/THF.
L-cyclo-Val-Ala-OMe by alkylation
5. (a) Scho¨llkopf, U. Pure Appl. Chem. 1983, 55, 1799; (b)
Scho¨llkopf, U.; Groth, U.; Deng, C. Synthesis 1981, 737.
6. Commercially available as OMe-ethers from Merck and
Fluka.
7. Alternatively,
D-cyclo-Val-Gly-OMe can be used.
8. Kiuchi, M.; Adachi, K.; Kohara, T.; Minoguchi, M.;
Hanano, T.; Aoki, Y.; Mishina, T.; Arita, M.; Nakao,
N.; Ohtsuki, M.; Hoshino, Y.; Teshima, K.; Chiba, K.;
Sasaki, S.; Fujita, T. J. Med. Chem. 2000, 43, 2946–2961.
9. The diastereomeric ratio (>10:1) of this step was irrele-
vant, since the stereochemical outcome of the overall
sequence was determined by the following methylation.
10. Isolated yield of pure diastereomer at ca. 70% conversion;
other isomer not detected (d.r.>20:1). Experimental pro-
cedure: To a solution of monoalkylated Scho¨llkopf
adduct (13.45 g, 31.3 mmol) in dry THF (75 ml) was
added a solution of n-BuLi (21.38 ml, 1.6 M in hexanes,
34.2 mmol) at −78°C to −65°C under an Ar atmosphere.
After stirring for 0.5 h at −78°C, methyliodide (4.05 g,
28.5 mmol) dissolved in dry THF (50 ml) was added
15. Watanabe, Y.; Komoda, Y.; Ebisuya, K.; Ozaki, S. Tet-
rahedron Lett. 1990, 31, 255–256.
1
16. Analytical data: H NMR (400 MHz, CD3OD): l=0.94
ppm (t, J=7 Hz, 3H, CH2CH3), 1.30–1.45 (m, 6H, CH2),
1.40 (s, 3H, CCH3), 1.45–1.53 (m, 2H, CH2), 1.73–1.82
(p, J=7 Hz, 2H, OCH2CH2), 1.97–2.06 (dt, J2=12 Hz,
J3=7 Hz, 1H, CCH2), 2.57–2.64 (dt, J2=13 Hz, J3=7
Hz, 1H, PhCH2), 2.66–2.73 (dt, J2=13 Hz, J3=7 Hz,
1H, PhCH2), 3.86 (dd, JPꢀH=11 Hz, JHꢀH=7 Hz, 1H,
POCH2), 3.93–3.98 (m, 1H, POCH2), 3.96 (t, J=7 Hz,
2H, PhOCH2), 6.84 (d, J=8 Hz, 2H, arom. CH), 7.16 (d,
J=8 Hz, 2H, arom. CH); MS (EI): 745 (2M−H)−, 372
(M−H)−.