D. Robert et al. / Journal of Organometallic Chemistry 691 (2006) 4393–4399
4399
[14], [Y(g5-C5Me4CH2SiMe2NC6H4-nBu-4-
(b) G.A. Molander, J. Winterfeld, J. Organomet. Chem. 524 (1996)
275–279;
(c) G.A. Molander, W.H. Retsch, J. Am. Chem. Soc. 119 (1997)
8817–8825;
(d) H. Schumann, M.R. Keitsch, J. Winterfeld, S. Muhle, G.A.
¨
Molander, J. Organomet. Chem. 559 (1998) 181–190;
(e) G.A. Molander, C.P. Corrette, Organometallics 17 (1998) 5504–
5512;
(f) H. Schumann, M.R. Keitsch, J. Demtschuk, G.A. Molander, J.
Organomet. Chem. 582 (1999) 70–82.
(THF)1.5
]
jN)(CH2SiMe3)(THF)2] [14], [Lu(g5-C5Me4CH2SiMe2-
NC6H4-nBu-4-jN)(CH2SiMe3)(THF)1.5] [14], [Y(g5C5Me4-
CH2SiMe2NCH2CH2NMe2-jN,N0)(CH2SiMe3)(THF)]
[16]. NMR spectra were recorded on Varian Gemini 200
and Varian Unity 500 spectrometers at 25 °C. Chemical
shifts for H NMR and 13C NMR were reported in ppm
1
relative to tetramethylsilane, using residual solvent reso-
nances as reference. Deuterated solvents were dried over
sodium, distilled and degassed prior to use.
[3] (a) A.A. Trifonov, T.P. Spaniol, J. Okuda, Organometallics 20 (2001)
4869–4874;
(b) A.A. Trifonov, T.P. Spaniol, J. Okuda, Dalton Trans. (2004)
2245–2250;
(c) S. Arndt, J. Okuda, Chem. Rev. 102 (2002) 1953–1976;
(d) J. Okuda, Dalton Trans. (2003) 2367–2378;
(e) Z. Hou, Y. Zhang, O. Tardif, Y. Wakatsuki, J. Am. Chem. Soc.
123 (2001) 9216–9217;
4.1. Typical procedure for complex synthesis
To a pentane suspension of [Ln(CH2SiMe3)3(THF)2]
cooled to ꢀ78 °C was added a pentane solution of one
equivalent of the linked amino-cyclopentadiene. After the
addition, the solution was stirred for 1 h, and then slowly
allowed to warm to 0 °C. Additional stirring at this temper-
ature for 2.5 h followed by filtration (complexes insoluble
or sparingly soluble in pentane) or reduction of the solvent
(pentane soluble complexes) afforded the desired products
after standing for one night at ꢀ32 °C. The compounds
(f) O. Tardif, M. Nishiura, Z. Hou, Tetrahedron 59 (2003) 10525–
10539.
[4] (a) T.I. Gountchev, T.D. Tilley, Organometallics 18 (1999) 5661–
5667;
(b) K. Takaki, K. Sonoda, T. Kousaka, G. Koshoji, T. Shishido, K.
Takehira, Tetrahedron Lett. 42 (2001) 9211–9214;
(c) Y. Horino, T. Livinghouse, Organometallics 23 (2004) 12–14.
[5] (a) P.-F. Fu, L. Brard, Y. Li, T.J. Marks, J. Am. Chem. Soc. 117
(1995) 7157–7168;
(b) A.Z. Voskoboynikov, A.K. Shestakova, I.P. Beletskaya, Organo-
metallics 20 (2001) 2794–2801.
[6] (a) G.A. Molander, M. Julius, J. Org. Chem. 57 (1992) 6347–6351;
(b) K. Takaki, K. Komeyama, K. Takehira, Tetrahedron 59 (2003)
10381–10395.
1
already described in the literature were identified by H
1
NMR, all new complexes were fully characterized by H
and 13C NMR spectroscopy, elemental analysis, and metal
titration.
[7] G.A. Molander, E.D. Dowdy, B.C. Noll, Organometallics 17 (1998)
3754–3758.
4.2. Hydrosilylation procedure
[8] S. Arndt, P. Voth, T.P. Spaniol, J. Okuda, Organometallics 19 (2000)
4690–4700.
[9] T. Sakakura, H.-J. Lautenschlager, M. Tanaka, J. Chem. Soc.,
Chem. Commun. 1 (1991) 40–41.
[10] (a) A. Zambelli, P. Longo, C. Pellecchia, A. Grassi, Macromol. 20
(1987) 2037–2039;
In the glove-box, 25 lmol of the complex were dissolved
in 0.5 mL of C6D6 in an NMR tube equipped with a Young
valve. To that solution was first added 20 equivalents of the
olefin, and then 21 equivalents of phenylsilane. The total
volume of the solution was then increased to 0.75 mL,
and the tube was closed and vigorously shaken. The reac-
(b) B.J. Burger, B.D. Santarsiero, M.S. Trimmer, J.E. Bercaw, J.
Am. Chem. Soc. 110 (1988) 3134–3146;
(c) J.E. Nelson, J.E. Bercaw, J.A. Labinger, Organometallics 8 (1989)
2484–2486;
(d) A.M. Lapointe, F.C. Rix, M. Brookhart, J. Am. Chem. Soc. 119
(1997) 906–917.
1
tion was monitored by H NMR spectroscopy on a 200
MHz spectrometer at 25 °C. The reaction time was defined
as being the total time required for the olefin to be entirely
hydrosilylated by the catalyst. The proportions of Mark-
ovnikov and anti-Markovnikov regioisomers were calcu-
[11] (a) E.A. Mintz, K.G. Moloy, T.J. Marks, V.W. Day, J. Am. Chem.
Soc. 104 (1982) 4692–4695;
(b) W.J. Evans, T.A. Ulibarri, J.W. Ziller, J. Am. Chem. Soc. 112
(1990) 219–223.
[12] (a) K.C. Hultzsch, T.P. Spaniol, J. Okuda, Angew. Chem., Int. Ed.
38 (1999) 227–230;
1
lated by integration of the appropriate signals in the H
NMR spectra. All experiments were repeated at least twice.
Acknowledgements
(b) K.C. Hultzsch, P. Voth, K. Beckerle, T.P. Spaniol, J. Okuda,
Organometallics 19 (2000) 228–243.
[13] R.D. Shannon, Acta Cryst. A 32 (1976) 751–767.
[14] P. Voth, D. Robert, T.P. Spaniol, J. Okuda (in preparation).
[15] (a) M. Nishiura, Z. Hou, Y. Wakatsuki, T. Yamaki, T. Miyamoto,
J. Am. Chem. Soc. 125 (2003) 1184–1185;
This work was supported by the Deutsche Forschungs-
gemeinschaft and the Fonds der Chemischen Industrie.
References
(b) M. Nishiura, Z. Hou, J. Mol. Catal. A 213 (2004) 10–106;
(c) W.-Z. Zhang, M. Nishiura, Z. Hou, J. Am. Chem. Soc. 127 (2005)
16788–16789.
[1] (a) G.A. Molander, Chem. Rev. 92 (1992) 29–68;
(b) G.A. Molander, J.A.C. Romero, Chem. Rev. 102 (2002) 2161–
2185;
(c) R. Anwander, second ed., in: B. Cornils, W.A. Herrmann (Eds.),
Applied Homogeneous Catalysis with Organometallic Compounds,
vol. 2, Wiley-VCH, Germany, 2002, pp. 974–1014.
[2] (a) S. Onozawa, T. Sakakura, M. Tanaka, Tetrahedron Lett. 35
(1994) 8177–8180;
[16] P. Voth, T.P. Spaniol, J. Okuda, Organometallics 22 (2003) 3921–3926.
[17] (a) P. Voth, S. Arndt, T.P. Spaniol, J. Okuda, M.L.H. Green, L.J.
Ackerman, Organometallics 22 (2003) 65–76;
(b) P.J. Shapiro, W.D. Cotter, W.P. Schaefer, J.A. Labinger, J.E.
Bercaw, J. Am. Chem. Soc. 116 (1994) 4623.
[18] J. Okuda, K. Musikabhumma, P.-J. Sinnema, Isr. J. Chem. 42 (2002)
383–392.