amino acids (â2-amino acids) tend to adopt the 14 helix,
which is defined by 14-membered ring CdO(i)- -HsN(i
- 2) hydrogen bonds. Oligomers containing both â2- and
â3-amino acid residues can form the 10/12 helix, a very
different conformation that contains two distinct types
of backbone hydrogen bonds.6 Di-â-peptide segments
containing a â3-residue followed by a â2-residue, with the
appropriate relative configurations, adopt a reverse turn
conformation. Seebach et al. have developed somatostatin
mimics based on this turn motif.7
Efficien t Syn th esis of En a n tiom er ica lly
P u r e â2-Am in o Acid s via Ch ir a l
Isoxa zolid in on es
Hee-Seung Lee,† J in-Seong Park,‡
Byeong Moon Kim,‡ and Samuel H. Gellman*,†
Department of Chemistry, University of Wisconsin,
Madison, Wisconsin 53706-1396, and School of Chemistry,
College of Natural Sciences, Seoul National University,
Seoul 151-742, Korea
Our group’s â-peptide studies began with conforma-
tionally preorganized residues, e.g., â-amino acids rigidi-
fied by small rings.8 We have shown that these residues
confer unique properties on â-peptides, including high
conformational stability in aqueous solution and folding
patterns that are inaccessible without backbone con-
straints.9 â-Peptides containing both cyclically con-
strained residues and acyclic â3-residues combine the
conformational stability provided by the former with the
ease of the side-chain introduction provided by the
latter.10 This synergy should extend to mixtures of
constrained and â2-residues. Furthermore, combining â2-
residues, â3-residues, and constrained residues in a single
sequence should provide great versatility in orienting
specific sets of side chains along a folded â-peptide
scaffold. Exploration of these latter two possibilities has
been hampered, however, because â2-amino acids are
more difficult to prepare than are â3-amino acids.
â3-Amino acids are readily available from the corre-
sponding R-amino acids via Arndt-Eistert methodology.11
This simple and enantiospecific route provides access to
building blocks with a wide range of side chains. Several
routes to â2-amino acids have been reported,12 but none
is as efficient or general as the Arndt-Eistert route to
gellman@chem.wisc.edu
Received November 19, 2002
Abstr a ct: We report a practical and scalable synthetic route
for the preparation of R-substituted â-amino acids (â2-amino
acids). Michael addition of a chiral hydroxylamine, derived
from R-methylbenzylamine, to an R-alkylacrylate followed
by cyclization gives a diastereomeric mixture of R-substi-
tuted isoxazolidinones. These diastereomers are separable
by column chromatography. Subsequent hydrogenation of
the purified isoxazolidinones followed by Fmoc protection
affords enantiomerically pure Fmoc-â2-amino acids, which
are useful for â-peptide synthesis. This route provides access
to both enantiomers of a protected â2-amino acid.
â-Amino acids have long been employed as precursors
for â-lactams and other medicinally important mol-
ecules.1,2 More recently, â-amino acids have gained
attention as building blocks for oligomers with well-
defined folding behavior (foldamers).3 Short â-amino acid
oligomers (â-peptides) can take on a variety of secondary
structures; the substitution patterns of the individual
residues within a â-peptide are critical determinants of
the folding pattern.4
Seebach et al. have pioneered the use of monosubsti-
tuted â-amino acids to create â-peptide foldamers.5
Oligomers containing exclusively â-substituted â-amino
acids (â3-amino acids) or exclusively R-substituted â-
(6) (a) Seebach, D.; Schreiber, J . V.; Abele, S. Helv. Chim. Acta 2000,
83, 34. (b) Schreiber, J . V.; Seebach, D. Helv. Chim. Acta 2000, 83,
3139.
(7) (a) Seebach, D.; Abele, S.; Gademann, K.; J aun, B. Angew. Chem.,
Int. Ed. 1999, 38, 1595. (b) Gademann, K.; Kimmerlin, T.; Hoyer, D.;
Seebach, D. J . Med. Chem. 2001, 44, 2460.
(8) (a) Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D.
R.; Gellman, S. H. J . Am. Chem. Soc. 1996, 118, 13071. (b) Appella,
D. H.; Christianson, L. A.; Klein, D. A.; Powell, D. R.; Huang, X.;
Barchi, J . J .; Gellman, S. H. Nature 1997, 387, 381. (c) Wang, X.;
Espinosa, J . F.; Gellman, S. H. J . Am. Chem. Soc. 2000, 122, 4821. (d)
Lee, H.-S.; LePlae, P. R.; Porter, E. A.; Gellman, S. H. J . Org. Chem.
2001, 66, 3597. (e) LePlae, P. R.; Umezawa, N.; Lee, H.-S.; Gellman,
S. H. J . Org. Chem. 2001, 66, 5629.
† University of Wisconsin.
‡ Seoul National University.
(1) For reviews on the synthesis of â-amino acids, see: (a) Enanti-
oselective Synthesis of â-amino acids; J uaristi, E., Ed.; Wiley-VCH:
New York, 1997. (b) J uaristi, E.; Lopez-Ruiz, H. Curr. Med. Chem.
1999, 6, 983.
(2) (a) Barrow, R. A.; Hemscheidt, T.; Liang, J .; Paik, S.; Moore, R.
E.; Tius, M. A. J . Am. Chem. Soc. 1995, 117, 2479. (b) Floreancig, P.
E.; Swalley, S. E.; Trauger, J . W.; Dervan, P. B. J . Am. Chem. Soc.
2000, 122, 6342. (c) Reinelt, S.; Merce, M.; Dedier, S.; Reitinger, T.;
Folkers, G.; Lopez de Castro, J . A.; Rognan, D. J . Biol. Chem. 2001,
276, 24525. (d) For biologically active â-peptides, see: Werder, M.;
Hausre, H.; Abele, S.; Seebach, D. Helv. Chim. Acta 1999, 82, 1774.
Hamuro, Y.; Schneider, J . P.; DeGrado, W. F. J . Am. Chem. Soc. 1999,
121, 12200. Porter, E. A.; Wang, X.; Lee, H.-S.; Weisblum, B.; Gellman,
S. H. Nature 2000, 404, 565.
(3) For reviews, see: (a) Gellman, S. H. Acc. Chem. Res. 1998, 31,
173. (b) Gademann, K.; Hintermann, T.; Schreiber, J . V. Curr. Med.
Chem. 1999, 6, 905. (c) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F.
Chem. Rev. 2001, 101, 3219. (d) Hill, D. J .; Mio, M. J .; Prince, R. B.;
Hughes, T. S.; Moore, J . S. Chem. Rev. 2001, 101, 3893.
(4) DeGrado, W. F.; Schneider, J . P.; Hamuro, Y. J . Pept. Res. 1999,
54, 206.
(9) Lee, H.-S.; Syud, F. A.; Wang, X.; Gellman, S. H. J . Am. Chem.
Soc. 2001, 123, 7721.
(10) LePlae, P. R.; Fisk, J . D.; Porter, E. A.; Weisblum, B.; Gellman,
S. H. J . Am. Chem. Soc. 2002, 124, 6820.
(11) Guichard, G.; Abele, S.; Seebach, D. Helv. Chim. Acta 1998,
81, 187.
(12) (a) For use of Evans’ chiral auxiliary, see: Evans, D. A.; Urpi,
F.; Somers, T. C.; Clark, J . S.; Bilodeau, M. T. J . Am. Chem. Soc. 1990,
112, 8215. Hintermann, T.; Seebach, D. Helv. Chim. Acta 1998, 81,
2093. Abele, S.; Guichard, G.; Seebach, D. Helv. Chim. Acta 1998, 81,
2141. Micuch, P.; Seebach, D. Helv. Chim. Acta 2002, 85, 1567. Sibi,
M. P.; Deshpande, P. K. J . Chem. Soc., Perkin Trans. 1 2000, 1461.
(b) For use of Oppolzer’s sultam, see: Posinet, R.; Chassaing, G.;
Vaissermann, J .; Lavielle, S. Eur. J . Org. Chem. 2000, 83. (c) For use
of pseudoephedrin, see: Myers, A.; Schnider, P.; Kwon, S.; Kung, D.
J . Org. Chem. 1999, 64, 3322. Nagula, G.; Huber, V. J .; Lum, C.;
Goodman, B. A. Org. Lett. 2000, 2, 3527. (d) For use of chiral
pyrimidinone, see: J uaristi, E.; Quintana, D. Tetrahedron: Asymmetry
1992, 3, 723. (e) For C-H activation, see: Davies, H. M. L.; Venkat-
aramani, C. Angew. Chem., Int. Ed. 2002, 41, 2197.
(5) (a) Seebach, D.; Overhand, M.; Kuhnle, F. N. M.; Martinoni, B.;
Oberer, L.; Hommel, U.; Widmer, H. Helv. Chim. Acta 1996, 79, 913.
(b) Hintermann, T.; Seebach, D. Synlett 1997, 437.
10.1021/jo026738b CCC: $25.00 © 2003 American Chemical Society
Published on Web 01/11/2003
J . Org. Chem. 2003, 68, 1575-1578
1575