C O M M U N I C A T I O N S
Table 1. Tandem Coupling of Thiazole and Absorption and Emission Properties of 3, 4a, and 6a
absorptionb
max, nm
(ꢀ, M-1 cm-1
emissionb
% yield
of 3
% yield
of 6
λ
λ
max, nm
Aryl1
Aryl2−X
product
)
(Φ)c
4-MeOC6H4- (2a)
82
none
C6H5I (2c)
3a
300 (10 800)
333 (28 000)
334 (22 800)
339 (22 300)
350 (30 200)
339 (27 900)
340 (25 400)
376 (38 200)
398 (26 900)
361 (0.21)
406 (0.22)
408 (0.17)
419 (0.17)
462 (0.27)
419 (0.24)
401 (0.19)
462 (0.49)
488 (0.37)
69
94
6ac
6ad
4a
6ae
6af
3b
4-MeC6H4I (2d)
4-MeOC6H4I (2a)
4-NCC6H4Br (2e)
4-nC6H13OC6H4I (2f)
none
62
76
4-Me2NC6H4- (2b)
80
4-(4-nC7H15C6H4)C6H4Br (2g)
2e
39d
26d
6bg
6be
a A thiazole derivative 3 was prepared with 3 mol % PdCl2(PPh3)2 and 2 mol % CuI (1/I-Aryl1/TBAF ) 2:1:2). Disubstituted thiazole 6 was synthesized
with Aryl2-X (2 equiv), CsCO3 (2 equiv), 10 mol % Pd(OAc)2, and 20 mol % PPh3 with stirring for 24-70 h. b Absorption spectra and emission spectra
were measured as a chloroform solution (1 × 10-5 and 3 × 10-6 M, respectively). c The quantum yield, Φ, was estimated by comparison of standard 1.0
M quinine sulfate (Φ ) 0.546). d The yield after recrystallization.
References
(1) (a) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda,
M.; Chatani, N. Nature 1993, 366, 529. (b) Weissman, H.; Song, X.;
Milstein, D. J. Am. Chem. Soc. 2001, 123, 337. (c) Oi, S.; Fukita, S.;
Hirata, N.; Watanuki, N.; Miyano, S.; Inoue, Y. Org. Lett. 2001, 3, 2579.
(d) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull.
Chem. Soc. Jpn. 1998, 71, 467. (e) Jia, C.; Piao, D.; Oyamada, J.; Lu.
W.; Kitamura, T.; Fujiwara, Y. Science 2000, 287, 1992. (f) Satoh, T.;
Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. Engl.
1997, 36, 1740. (g) Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. J. Am.
Chem. Soc. 2000, 122, 10464. (h) Chen, H.; Schlecht, S.; Semple, T. C.;
Hartwig, J. F. Science 2000, 287, 1995. (i) Waltz, K. M.; Hartwig, J. F.
Science 1997, 277, 211. (j) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka,
R. E., Jr.; Smith, M. R., III. Science 2002, 295, 305.
(2) For reviews: (a) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698. (b)
Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633.
(3) For reviews: (a) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem.,
Int. Ed. 1998, 37, 402-428. (b) Friend, R. H.; Gymer, R. W.; Holmes,
A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.;
Dos Santos, D. A.; Bre´das, J. L.; Lo¨gdlund, M.; Salaneck, W. R. Nature
1999, 397, 121-128. (c) Shirota, Y. J. Mater. Chem. 2000, 10, 1-25.
(d) Kim, D. Y.; Cho, H. N.; Kim, C. Y. Prog. Polym. Sci. 2000, 25, 1089-
1139. (e) Mitschke, U.; Ba¨uerle, P. J. Mater. Chem. 2000, 10, 1471-
1507.
Figure 1. The range of temperature showing liquid crystalline character-
(4) (a) Demus, D.; Goodby, J. W.; Gray, G. W.; Spiess, H.-W. Handbook of
istics evaluated with DSC and polarized microscopy. All of the compounds
except 6ac and 6be showed characteristic texture for nematic phase. The
texture of 6be suggested it was the smectic phase.
Liquid Crystals; Wiley: Germany, 1998. (b) Bahadur, B. Liquid Crystals-
Applications and Uses; World Scientific: Singapore, 1990.
(5) (a) Mori, A.; Shimada, T.; Kondo, T.; Sekiguchi, A. Synlett 2001, 649.
(b) Mori, A.; Kawashima, J.; Shimada, T.; Suguro, M.; Hirabayashi, K.;
Nishihara, Y. Org. Lett. 2000, 2, 2935. (c) Mori, A.; Kondo, T.; Kato, T.;
hand, a reduction peak was observed at -2.17 V when a cyano
Nishihara, Y. Chem. Lett. 2001, 286.
group was introduced. Thereby, a thiazole derivative bearing both
electron-donating and -withdrawing groups (6ae and 6be) showed
oxidation and reduction peaks. These characteristics would suggest
both hole- and electron-transporting natures in EL materials.12
In summary, a synthetic reaction involving a novel C-H
substitution of thiazole with an aromatic compound was demon-
strated to be a facile and combinatorial preparation of a variety of
light-emitting and liquid crystalline molecules, which would be a
highly potential single-layer EL device with polarized light emis-
sion, through measurements of UV-vis absorption and emission
spectra, LC properties, and CV analyses. With the new preparative
methodology in hand, design and synthesis of the related polymer-
bound LC and light-emitting thiazole derivatives are in progress
and will be described in due course.
(6) The reaction at 40 °C for 96 h afforded 61% of 3a (3a/4a ) 9:1) and at
room temperature for 96 h, 35% (3a/4a ) 20:1).
(7) Do¨lling, K.; Zaschke, H.; Schubert, H. J. Prakt. Chem. 1979, 321, 643.
(8) An example of library construction for light-emitting materials: Shiedel,
M.-S.; Briehn, C. A.; Ba¨uerle, P. Angew. Chem., Int. Ed. 2001, 40,
4677.
(9) Mochizuki, H.; Hasui, T.; Kawamoto, M.; Shiono, T.; Ikeda, T.; Adachi,
C.; Taniguchi, Y.; Shirota, T. Chem. Commun. 2000, 1923.
(10) Kaifer, A. E.; Go´mez-Kaifer, M. Supramolecular Electrochemistry; Wiley-
VCH: Weinheim, 1999.
(11) Tables of peak potential values for 3 and 6: See the Supporting
Information.
(12) (a) Kido, J.; Kohda, M.; Okuyama, K.; Nagai, K. Appl. Phys. Lett. 1992,
61, 761-763. (b) Zhang, C.; von Seggern, H.; Kraabel, B.; Schmidt, H.-
W.; Heeger, A. J. Synth. Met. 1995, 72, 185-188. (c) Kido, J.; Shionoya,
H.; Nagai, K. Appl. Phys. Lett. 1995, 67, 2281-2283. (d) Birgerson, J.;
Kaeriyama, K.; Barta, P.; Bro¨ms, P.; Fahlman, M.; Granlund, T.; Salaneck,
W. R. AdV. Mater. 1996, 8, 982-985. (e) Wu, C. C.; Sturm, J. C.; Register,
R. A.; Tian, J.; Dana, E. P.; Thompson, M. E. IEEE Trans. Electron
DeVices 1997, 44, 1269-1281.
Supporting Information Available: Experimental details and
analytical data (PDF). This material is available free of charge via the
JA0289189
9
J. AM. CHEM. SOC. VOL. 125, NO. 7, 2003 1701