Polysubstituted Pyrroles and γ-Lactams
SCHEME 1
Although the above methods provide efficient ways to con-
struct pyrrole and γ-lactam structures, it is still necessary to
develop novel and alternative methodologies so that the sub-
stitution patterns of these important hetereocyclic compounds
can be expanded. The application of R-diazocarbonyl com-
pounds to the development of novel synthetic methodologies
has been extensively pursued in our laboratory.12,13 In this paper,
we report a detailed study on the development of a new approach
to both pyrroles and γ-lactams, based on the nucleophilic addi-
tion of Ti(IV) enolates derived from R-diazo-â-keto carbonyl
compounds to N-tosylimines and the subsequent diazo decom-
position under Rh(II)-catalyzed or photoinduced conditions.14
Results and Discussions
The general reaction sequence is outlined in Scheme 1. It is
assumed that the δ-amino-R-diazocarbonyl compound 3 can be
obtained from the addition of an enolate that is derived from
â-keto-R-diazocarbonyl compound 2 to N-tosylimine 1. Rh2-
(OAc)4-catalyzed reaction of 3 gives 3-pyrrolidinone derivative
4 through intramolecular N-H insertion,15 which is further
transformed into pyrrole derivative 6. On the other hand, if the
diazo compound 3 is subjected to photolysis, Wolff rearrange-
ment will occur to generate a ketene intermediate, which may
(7) For recent examples on the pyrrole synthesis based on the transition
metal catalyzed process, see: (a) Takaya, H.; Kojima, S.; Murahashi, S.-I.
Org. Lett. 2001, 3, 421-424. (b) Kel’in, A. V.; Sromek, A. W.; Gevorgyan,
V. J. Am. Chem. Soc. 2001, 123, 2074-2075. (c) Gabriele, B.; Salerno,
G.; Fazio, A. J. Org. Chem. 2003, 68, 7853-7861. (d) Ramanathan, B.;
Keith, A. J.; Armstrong, D.; Odom, A. L. Org. Lett. 2004, 6, 2957-2960.
(e) Shen, H.-C.; Li, C.-W.; Liu, R.-S. Tetrahedron Lett. 2004, 45, 9245-
9247. (f) Wurz, R. P.; Charette, A. B. Org. Lett. 2005, 7, 2313-2316. (g)
Kamijo, S.; Kanazawa, C.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127,
9260-9266. (h) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc.
2005, 127, 11260-11261. (i) Larionov, O. V.; de Meijere, A. Angew. Chem.,
Int. Ed. 2005, 44, 5664-5667.
(8) For recent reviews on γ-lactam synthesis, see: (a) Huang, P.-Q. In
New Methods for the Asymmetric Synthesis of Nitrogen Heterocycles;
Research Signpost: Trivandrum, India, 2005, pp 197-222. (b) Smith, M.
B. In Science of Synthesis; Weinreb, S., Ed; Georg Thieme Verlag: Stuttgart,
Germany, 2005; Vol. 21, pp 647-711.
(9) Recent examples of the synthesis of γ-lactams by ring expansions,
see: (a) Banfi, L.; Guanti, G.; Rasparini, M. Eur. J. Org. Chem. 2003,
1319-1336. (b) Alcaide, B.; Almendros, P.; Alonso, J. M. J. Org. Chem.
2004, 69, 993-996. (c) Park, J.-H.; Ha, J.-R.; Oh, S.-J.,; Kim, J.-A.; Shin,
D.-S.; Won, T.-J.; Lam, Y.-F.; Ahn, C. Tetrahedron Lett. 2005, 46, 1755-
1757. (d) Alcaide, B.; Almendros, P.; Cabrero, G.; Ruiz, M. P. Org. Lett.
2005, 7, 3981-3984.
(10) For examples of [3+2] annulations in γ-lactam synthesis, see: (a)
Roberson, C. W.; Woerpel, K. A. J. Org. Chem. 1999, 64, 1434-1435. (b)
Sun, P.-P.; Chang, M.-Y.; Chiang, M. Y.; Chang, N.-C. Org. Lett. 2003, 5,
1761-1763.
be attacked by the internal nucleophile to afford γ-lactam
derivative 7.16
The aldol condensation of R-diazo-â-ketoesters with alde-
hydes was reported by Calter and co-workers by using TiCl4/
Et3N.17,18 However, these conditions have not been applied to
Mannich-type reaction with imines. Very recently, Doyle and
co-workers reported their work on nucleophilic attack of silyl
enol ethers derived from R-diazo-â-ketoesters to aldehydes and
imines employing the Mukaiyama strategy.19 We have adopted
the TiCl4/Et3N system and expanded it to Mannich-type
reactions with N-tosylimines.
The initial investigation of the reaction of N-tosylimine with
the Ti(IV) enolate 8, derived from R-diazo-â-ketoester by
treating the diazo ester with TiCl4/Et3N at -78 °C in CH2Cl2,
failed to afford the expected product. This is presumably due
to the fact that N-tosylimines are not as reactive as aldehydes
toward the Ti(IV) enolate. To further increase the electrophilicity
of the CdN bond, N-tosylimine was activated by a second
equivalent of TiCl4 before reacting with the Ti(IV) enolate. With
use of this protocol, the expected condensation product 3 was
obtained in moderate yield (Scheme 2 and Table 1, entry 1).
During the optimization of the reaction condition, it was
observed that the starting materials 1 and 2 were not completely
(11) For the recent examples of γ-lactam synthesis by metal carbene
intramolecular C-H insertions, see: (a) Yoon, C. H.; Zaworotko, M. J.;
Moulton, B.; Jung, K. W. Org. Lett. 2001, 3, 3539-3542. (b) Wee, A. G.
H.; Duncan, S. C. Tetrahedron Lett. 2002, 43, 6173-6179. (c) Yoon, C.
H.; Nagle, A.; Chen, C.; Gandhi, D.; Jung, K. W. Org. Lett. 2003, 5, 2259-
2262. (d) Choi, M. K.-W.; Yu, W.-Y.; Che, C.-M. Org. Lett. 2005, 7, 1081-
1084. (e) Wee, A. G. H.; Duncan, S. C.; Fan, G.-j. Tetrahedron: Asymmetry
2006, 17, 297-307.
(12) For comprehensive reviews on the chemistry of R-diazocarbonyl
compounds, see: (a) Ye, T.; McKervey, M. A. Chem. ReV. 1994, 94, 1091-
1160. (b) Doyle, M. P.; McKervey, M. A.; Ye, T. In Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds; Wiley-Inter-
science: New York, 1998.
(13) For an account, see: Zhao, Y.; Wang, J. Synlett 2005, 2886-2892.
(14) Part of this investigation has been reported in a communication,
see: Deng, G.; Jiang, N.; Ma, Z.; Wang, J. Synlett 2002, 1913-1915.
(15) For intramolecular N-H bond insertion in the synthesis of 3-pyr-
rolidinone derivatives, see: (a) Moyer, M. P.; Feldman, P. L.; Rapoport,
H. J. Org. Chem. 1985, 50, 5223-5230. (b) Wang, J.; Hou, Y.; Wu, P. J.
Chem. Soc., Perkin Trans. 1 1999, 2277-2280. (c) Davis, F. A.; Fang, T.;
Goswami, R. Org. Lett. 2002, 4, 1599-1602.
(16) (a) Wang, J.; Hou, Y. J. Chem. Soc., Perkin Trans. 1 1998, 1919-
1924. (b) Wang, J.; Hou, Y.; Wu, P.; Qu, Z.; Chan, A. S. C. Tetrahedron:
Asymmetry 1999, 10, 4553-4561. (c) Lee, D. J.; Kim, K.; Park, Y. J. Org.
Lett. 2002, 4, 873-876. (d) For a recent review on Wolff rearrangement,
see: (e) Kirmse, W. Eur. J. Org. Chem. 2002, 2193-2256.
(17) (a) Calter, M. A.; Sugathapala, P. M.; Zhu, C. Tetrahedron Lett.
1997, 38, 3837-3840. (b) Calter, M. A.; Sugathapala, P. M. Tetrahedron
Lett. 1998, 39, 8813-8816. (c) Calter, M. A.; Zhu, C. J. Org. Chem. 1999,
64, 1415-1419.
(18) We have extended the reaction of Ti(IV) enolate 8 with ketones,
see: Deng, G.; Tian, X.; Wang, J. Tetrahedron Lett. 2003, 44, 587-590.
(19) Doyle, M. P.; Kundu, K.; Russell, A. E. Org. Lett. 2005, 7, 3131-
3134.
J. Org. Chem, Vol. 71, No. 15, 2006 5561