We gratefully acknowledge financial support from the CNRS
(Gif-sur-Yvette, France) for the provision of a postgraduate
studentship to M. C., and the European Community for the
award of a Fellowship to J.-M. W. We also wish to thank Dr. A.
M. Z. Slawin for the X-ray crystallographic determination.
Notes and references
1 S. Moncada, R. M J. Palmer and E. A. Higgs, Pharmacol. Rev., 1991,
43, 109; J. S. Stamler, D. J. Singel and J. Loscalzo, Science, 1992, 258,
1898; A. R. Butler and D. L. H. Williams, Chem. Soc. Rev., 1993, 22,
233; R. J. P. Williams, Chem. Soc. Rev., 1996, 77, 77; K. D. Kronche,
K. Fehsel and K. Kolv-Bachofen, Biol. Chem., 1997, 1, 107.
2 For a review see D. L. H. Williams, Acc. Chem. Res., 1999, 32, 869.
3 J. S. Stamler, D. I. Simon, J. A. Osborne, M. E. Mullins, O. Jaraki, T.
Michel, D. J. Singel and J. Loscalzo, Proc. Natl. Acad Sci. U.S.A., 1992,
89, 444.
4 P. Girard, N. Guillot, W. B. Motherwell, R. S. Hay-Motherwell, T.
Michel, D. J. Singel and J. Loscalzo, Proc. Natl. Acad Sci. U.S.A.; P.
Potier, Tetrahedron, 1999, 55, 3573; M. Cavero, W. B. Motherwell and
P. Potier, Tetrahedron Lett., 2001, 42, 4377.
Scheme 3
Table 1 Thermal rearrangement of thionitrites
Product yield (%)
Disulfide 9
Thionitrite
Solventa
Nitroso dimer 8
2
3
4
5
6
7
A
21
52b
A (B)
A (B)
A (B)
A (B)
A
16 (18)
0 (0)
30 (17)
0 (0)
0
39 ,(65)
43 (73)
30 (65)
65 (72)
58
5 This rearrangement was first reported by E. C. Sabatino and R. J.
Grinter, J. Org. Chem., 1963, 28, 3437.
6 H.-J. Altenbach, Functional Group Transformations via Allyl Re-
arrangements, in Comprehensive Organic Synthesis, ed. B. M. Trost
and I. Fleming, Pergamon Press, Oxford, 1991, vol. 4, ch. 5, p. 829; F.
Chatzopoulos-Ouar and G. Descotes, J. Org. Chem., 1985, 50, 118; S.
N. Suryawanshi, A. Rani and D. S. Bhakuni, Synth. Commun., 1990, 20,
625; D. Villemin and M. Hachemi, Synth. Commun., 1996, 26, 2449.
7 F. Ramon, M. Degueil Castaing and B. Maillard, Tetrahedron, 1998, 54,
11489; F. Ramon, M. Degueil Castaing and B. Maillard, J. Org. Chem.,
1996, 61, 2071.
a Solvents: A = benzene, B = dichloromethane. b For further character-
isation, the complex mixture of diastereoisomers was transformed into the
corresponding oximes by heating in isopropanol at reflux for 24 h.
8 J. S. B. Park and J. C. Walton, J. Chem. Soc., Perkin Trans. 2, 1997,
2579.
9 K. W. Krosley, G. J. Gleicher and G. E. Clapp, J. Org. Chem., 1992, 57,
840; D. Laurie, D. C. Nonhebel, C. J. Suckling and J. C. Walton,
Tetrahedron, 1993, 49, 5869; C. Chatgilialoglu, K. U. Ingold and J. C.
Scaiano, J. Am. Chem. Soc., 1981, 103, 7739; M. Newcomb and A. G.
Glenn, J. Am. Chem. Soc., 1989, 111, 275; V. W. Bowry, J. Lusztyk and
K. U. Ingold, J. Am. Chem. Soc., 1991, 113, 5687; A. Johns, J. A.
Murphy, C. W. Patterson and N. F. Wooster, J. Chem. Soc., Perkin
Trans. 1, 1990, 1179; S. Ayral-Kaloustian and W. C. Agosta, J. Org.
Chem., 1983, 48, 1718; K. W. Krosley and G. J. Gleicher, J. Phys. Org.
Chem., 1993, 6, 228.
Fig. 1
ment of the structure determination was not possible and the
results could only be used as proof of structure. In terms of
molecular recognition, it is of interest to note that the single
diastereomer corresponds to the (R,S) or meso form implying
that the favoured low energy pathway for dimerisation of the
nitroso monomer involves exclusive combination of the two
different enantiomers.
10 D. M. Smith, A. Nicolaides, B. T. Golding and L. Radom, J. Am. Chem.
Soc., 1998, 120, 10223; F. E. Ziegler and A. K. Petersen, J. Org. Chem.,
1994, 59, 2707; F. E. Ziegler, J. Org. Chem., 1995, 60, 2666; J.
Amaudrut and O. Wiest, Org. Lett., 2000, 2, 1251.
From a mechanistic standpoint, the above rearrangement
could, in principle, be rationalised in terms of an initial
electrophilic addition of a nitrosonium cation to the double bond
followed by neighbouring group participation from the lone pair
of the sulfur atom. However, efforts to trigger such a pathway
through the addition of a catalytic quantity of nitrosonium
tetrafluoroborate to thionitrite led to extensive decomposition.
In similar fashion, even although a formal analogy exists for
intramolecular homolytic displacement leading to epoxide
formation from allylic peroxy derivatives,7 the well known lack
of reactivity of nitric oxide with alkenes8 renders such a
mechanism unlikely. We therefore consider that the most
plausible reaction pathway involves ring closure of an initially
formed allylic thiyl radical and that the overall reaction is
thermodynamically driven by the highly efficient capture of the
carbon centered radical, either by cage recombination with
nitric oxide or in a chain process by reaction with the thionitrite.
Although extensive mechanistic,9 computational10 and syn-
thetic11,12 work has been carried out on the oxiranyl–carbinyl
allyloxy radical equilibrium, primarily for epoxide ring open-
ing11 but also for reclosure reactions,12 the rearrangement
described herein represents, to the best of our knowledge, the
first preparative example involving the sulfur congener.
11 D. H. R. Barton, R. S. Hay-Motherwell and W. B. Motherwell, J. Chem.
Soc., Perkin Trans. 1, 1981, 2363; A. Johns and J. A. Murphy,
Tetrahedron Lett., 1988, 29, 837; R. C. Gash, F. MacCorquodale and J.
C. Walton, Tetrahedron, 1989, 45, 5531; V. H. Rawal, R. C. Newton
and V. Krishnamurthy, J. Org. Chem., 1990, 55, 5181; V. H. Rawal and
V. Krishnamurthy, Tetrahedron Lett., 1992, 33, 3439; V. H. Rawal and
S. Iwasa, Tetrahedron Lett., 1992, 33, 4687; V. H. Rawal and H. M.
Zhong, Tetrahedron Lett., 1992, 33, 5197; V. H. Rawal, V. Krishna-
murthy and A. Favre, Tetrahedron Lett., 1993, 34, 2899; W. R.
Bowman, B. A. Marples and N. A. Zaidi, Tetrahedron Lett., 1989, 30,
3343; S. Kim and S. Lee, Tetrahedron Lett., 1991, 32, 6575; P. Galatsis,
S. D. Millan and T. Faber, J. Org. Chem., 1993, 58, 1215; E. Strogryn
and M. H. Gianni, Tetrahedron Lett., 1970, 3025; D. A. Corser, B. A.
Marples and R. K. Dart, Synlett, 1992, 987; J. A. Murphy, C. W.
Patterson and N. F. Wooster, J. Chem. Soc., Perkin Trans. 1, 1993, 405;
A. P. Breen, J. A. Murphy, C. W. Patterson and N. F. Wooster,
Tetrahedron, 1993, 49, 10643.
12 A. L. Nussbaum, R. Wayne, E. Yuan, O. Zagneetko Sarre and E. P.
Olivetto, J. Am. Chem. Soc., 1965, 87, 2451; R. D. Rieke and N. A.
Moore, J. Org. Chem., 1972, 37, 413; M. P. Bertrand and J. M. Surzur,
Bull. Soc. Chim. Fr., 1973, 7, 2393; H. Suginome and J. B. Wang, J.
Chem. Soc., Chem. Commun., 1990, 1629; J. S. Weinberg and A. Miller,
J. Org. Chem., 1979, 44, 4722; P. Galatsis and S. D. Millan,
Tetrahedron Lett., 1991, 32, 7493; F. E. Ziegler and A. K. Pertersen, J.
Org. Chem., 1994, 59, 2707.
CHEM. COMMUN., 2002, 2394–2395
2395