RhCl(PPh3)3 and RhH(CO)(PPh3)3, are catalytically ineffec-
tive.8 This was a significant finding for our study, because
it is generally recognized that rhodium-phosphine com-
plexes more efficiently catalyze the decarbonylation of
aldehydes.10 The key to solving this question was to control
the amount of added phosphine ligand so that rhodium
complexes both with and without phosphine ligands, which
should be responsible for decarbonylation and carbonylation,
respectively, could coexist in one catalyst system.
results encouraged us to verify the synergism between
decarbonylation formaldehyde by [RhCl(BINAP)]2 and car-
bonylative cyclization of alkynes with 2-haloarylboronic
acids by [RhCl(cod)]2.
Under the catalyst consisting of [RhCl(cod)]2 and BINAP
in a molar ratio of 2.5:1, we examined the reaction of
4-octyne with 2-bromophenylboronic acid in the presence
of paraformaldehyde instead of carbon monoxide (Table 1,
First, we pursued a rhodium species generated from the
reaction of [RhCl(cod)]2 with BINAP, the amount of which
was not to cover all of a given rhodium center. The 31P NMR-
experimental treatment of [RhCl(cod)]2 with BINAP ([RhCl-
(cod)]2/BINAP ) 2.5:1) in CD2Cl2 at room temperature
resulted in complete consumption of the BINAP to give
[RhCl(BINAP)]2 as the sole rhodium complex having a
BINAP ligand.11 Furthermore, 103Rh NMR analysis revealed
the existence of two kinds of rhodium species, which can
be assigned to [RhCl(cod)]2 and [RhCl(BINAP)]2. These
Table 1. Effect of BINAP in the Reaction of 4-Octyne with 1
and Paraformaldehydea
(4) For recent papers on use of Mo(CO)6, see: (a) Wu, X.; Mahalingam,
A. K.; Wan, Y.; Alterman, M. Tetrahedron Lett. 2004, 45, 4635–4638. (b)
Herrero, M. A.; Wannberg, J.; Larhed, M. Synlett 2004, 2335–2338. (c)
Wannberg, J.; Dallinger, D.; Kappe, C. O.; Larhed, M. J. Comb. Chem.
2005, 7, 574–583. (d) Wannberg, J.; Kaiser, N.-F. K.; Vrang, L.;
Samuelsson, B.; Larhed, M.; Hallberg, A. J. Comb. Chem. 2005, 7, 611–
617. (e) Wu, X.; Ro¨nn, R.; Gossas, T.; Larhed, M. J. Org. Chem. 2005, 70,
3094–3098. (f) Wu, X.; Larhed, M. Org. Lett. 2005, 7, 3327–3329. (g)
Wu, X.; Ekegren, J. K.; Larhed, M. Organometallics 2006, 25, 1434–1439.
(h) Wu, X.; Wannberg, J.; Larhed, M. Tetrahedron 2006, 62, 4665–4670.
(i) Gold, H.; Ax, A.; Vrang, L.; Samuelsson, B.; Karle´n, A.; Hallberg, A.;
Larhed, M. Tetrahedron 2006, 62, 4671–4675. (j) Wannberg, J.; Sabnis,
Y. A.; Vrang, L.; Samuelsson, B.; Karle´n, A.; Hallberg, A.; Larhed, M.
Bioorg. Med. Chem. 2006, 14, 5303–5315. (k) Letavic, M. A.; Ly, K. S.
Tetrahedron Lett. 2007, 48, 2339–2343. For recent papers on the use of
DMF, see: (l) Ju, J.; Jeong, M.; Moon, J.; Jung, H. M.; Lee, S. Org. Lett.
2007, 9, 4615–4618. (m) Tambade, P. J.; Patil, Y. P.; Bhanushali, M. J.;
Bhanage, B. M. Tetrahedron Lett. 2008, 49, 2221–2224. For a recent paper
on the use of aldehydes, see: (n) Morimoto, T.; Fujioka, M.; Fuji, K.;
Tsutsumi, K.; Kakiuchi, K. J. Organomet. Chem. 2007, 692, 625–634. For
a recent paper on the use of acetic formic anhydride, see: (o) Berger, P.;
Bessmernykh, A.; Caille, J.-C.; Mignonac, S. Synthesis 2006, 3106–3110.
For a recent paper on the use of a carbamoylsilane, see: (p) Cunico, R. F.;
Pandey, R. K. J. Org. Chem. 2005, 70, 9048–9050.
entry
BINAP (mol %)
yield of 2b (%)
yield of 3b (%)
1
2
3
41
75
47
32
83
9
4
3
1
2
5
1
4
trace
4
5c
a Reaction conditions: 4-octyne (1 mmol), 1 (1.5 mmol), paraformal-
dehyde (5 mmol), [RhCl(cod)]2 (0.025 mmol), BINAP, Na2CO3 (2 mmol)
in dioxane/H2O (100/1, 2 mL) at 100 °C for 40 h. b Isolated yield. c 3 mmol
of 1 was used for 30 h.
entry 2). The reaction proceeded efficiently to afford the
desired indenone 2 in 75% yield, along with 4% of
naphthalene derivative 3. The addition of up to 5 mol % of
BINAP led to the formation of 2 in much lower yields
(entries 1 and 4). From these results, we postulated that
[RhCl(BINAP)]2 and [RhCl(cod)]2 are involved mainly in
the decarbonylation and carbonylative cyclization processes,
respectively, as we expected. Among other phosphines tested,
BIPHEP was almost as effective as BINAP: BIPHEP (71%),
dppe (68%), dppp (58%), dppb (62%), dppf (55%), and
2PPh3 (53%). Use of 3 equiv of 2-bromophenylboronic acid
increased the yield of 2 to as high as 83% in even a shorter
reaction time (30 h) (entry 5). Under these conditions,
pentafluorobenzaldehyde and trans-cinnamaldehyde did not
work better than paraformaldehyde (28% and 13% yields).12
The standard conditions established thus constituted 2.5 mol
% of [RhCl(cod)]2, 1 mol % of BINAP, 3 equiv of
2-bromophenylboronic acid, and 2 equiv of Na2CO3, in
dioxane/H2O (100/1) at 100 °C for 30 h.
(5) For recent papers on the use of aldehydes, see: (a) Jeong, N.; Kim,
D. H.; Choi, J. H. Chem. Commun. 2004, 1134–1135. (b) Fuji, K.;
Morimoto, T.; Tsutsumi, K.; Kakiuchi, K. Tetrahedron Lett. 2004, 45, 9163–
9166. (c) Kwong, F. Y.; Li, Y. M.; Lam, W. H.; Qiu, L.; Lee, H. W.; Yeung,
C. H.; Chan, K. S.; Chan, A. S. C. Chem.sEur. J. 2005, 11, 3872–3880.
(d) Shibata, T.; Toshida, N.; Yamasaki, M.; Maekawa, S.; Takagi, K.
Tetrahedron 2005, 61, 9974–9979. (e) Kwong, F. Y.; Lee, H. W.; Qiu, L.;
Lam, W. H.; Li, Y.-M.; Kwong, H. L.; Chan, A. S. C. AdV. Synth. Catal.
2005, 347, 1750–1754. (f) Kwong, F. Y.; Lee, H. W.; Lam, W. H.; Qiu,
L.; Chan, A. S. C. Tetrahedron: Asymmetry 2006, 17, 1238–1252. For a
recent paper on the use of formates, see: (g) Lee, H. W.; Chan, A. S. C.;
Kwong, F. Y. Chem. Commun. 2007, 2633–2635.
(6) Fuji, K.; Morimoto, T.; Tsutsumi, K.; Kakiuchi, K. Chem. Commun.
2005, 3295–3297 (use of formaldehyde).
(7) Matsuda, T.; Tsuboi, T.; Murakami, M. J. Am. Chem. Soc. 2007,
129, 12596–12597 (use of formaldehyde).
(8) Harada, Y.; Nakanishi, J.; Fujihara, H.; Tobisu, M.; Fukumoto, Y.;
Chatani, N. J. Am. Chem. Soc. 2007, 129, 5766–5771.
(9) Recently, Rh(I)-catalyzed carbonylation reactions of alkynes with
phenylboronic acid leading to R,ꢀ-unsaturated γ-lactones were reported.
¨
See: (a) Aksin, O; Dege, N.; Artok, L.; Tu¨rkmen, H.; C¸ etinkaya, B. Chem.
¨
Commun. 2006, 3187–3189. (b) Kus¸, M.; Artok, O. A.; Ziyanak, F.; Artok,
A proposed reaction pathway for the present reaction is
shown in Scheme 1.8 First, addition of BINAP, the amount
L. Synlett 2008, 2587–2592.
(10) Kreis, M.; Palmelund, A; Bunch, L.; Madsen, R. AdV. Synth. Catal.
2006, 348, 2148–2154, and references therein.
(11) [RhCl(BINAP)]2: 31P NMR (CD2Cl2) δ 49.5 ppm (d, JP-Rh ) 199
Hz). [RhCl(cod)]2: 103Rh NMR (CD2Cl2) δ 2438 ppm (s). The mixture of
[RhCl(cod)]2 (2.5 equiv) with BINAP (1 equiv): 31P NMR (CD2Cl2) δ 49.5
ppm (d, JP-Rh ) 199 Hz); 103Rh NMR (CD2Cl2) δ 1620 (t, JRh-P ) 199
Hz), 2438 ppm (s). For details, see the Supporting Information.
(12) For successful uses of other aldehydes on the CO gas-free
carbonylations, see: (a) Morimoto, T.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K.
J. Am. Chem. Soc. 2002, 124, 3806–3807. (b) Morimoto, T.; Fujioka, M.;
Fuji, K.; Tsutsumi, K.; Kakiuchi, K. Chem. Lett. 2003, 32, 154–155. (c)
References 4n, 5a and 5c-f.
1778
Org. Lett., Vol. 11, No. 8, 2009