COMMUNICATIONS
Table 3. Thermodynamic data for 10-mer DNA duplexes containing F5 P base pairs [1] J. A. Piccirilli, T. Krauch, S. E. Moroney, S. A. Benner, Nature 1990,
and the corresponding references.[a]
343, 33 37.
[2] J. D. Bain, C. Switzer, A. R. Chamberlin, S. A. Benner, Nature 1992,
356, 537 539.
Oligonucleotide
DH8 [kcalmolÀ1]DS8 [calmolÀ1 K]DG8
(258C) [kcalmolÀ1
]
[3] J. J. Voegel, S. A. Benner, Helv. Chim. Acta 1996, 79, 1863 1880; J. J.
Voegel, S. A. Benner, Helv. Chim. Acta 1996, 79, 1881 1898.
[4] T. J. Matray, E. T. Kool, J. Am. Chem. Soc. 1998, 120, 6191 6192.
[5] R. S. Coleman, M. L. Madaras, J. Org. Chem. 1998, 63, 5700 5703.
[6] K. M. Guckian, B. A. Schweitzer, R. X.-F. Ren, C. J. Sheils, D. C.
Tahmassebi, E. T. Kool, J. Am. Chem. Soc. 2000, 122, 2213 2222.
[7] M. Berger, A. K. Ogawa, D. L. McMinn, Y. Wu, P. G. Schultz, F. E.
Romesberg, Angew. Chem. 2000, 112, 3069 3071; Angew. Chem. Int.
Ed. 2000, 39, 2940 2942.
[8] E. Lee Tae, Y. Wu, G. Xia, P. G. Schultz, F. E. Romesberg, J. Am.
Chem. Soc. 2001, 123, 7439 7440.
[9] I. Singh, W. Hecker, A. K. Prasad, V. S. Parmar, O. Seitz, Chem.
Commun. 2002, 500 501.
d(CTGAATCGAC)¥
d(GTCGATTCAG)
(22¥23)
d(CTGAPTCGAC)¥
d(GTCGAF5TCAG)
(24¥25)
d(CTGATATCAG)2 (10)2 À67.5
d(CTGAGCTCAG)2 (11)2À82.3
d(CTGF5PF5PCAG)2 (13)2À94.3
À77.6
À61.5
À213
À175
À13.8
À9.1
À192
À231
À273
À10.1
À13.3
À13.0
[a] Duplex concentration: 1 32 mm; buffer: 10 mm NaH2PO4, 150 mm NaCl, pH 7.0.
(Figure 2). In contrast, the sequences d(CTGF5F5PPCAG)
(14) as well as d(CTGAF5PTCAG) (12) prefer a monomo-
lecular structure with constant Tm up to much higher
concentrations (> 10 mm). In the case of 13 the central portion
of the oligonucleotide seems to be rigidified by the alternating
F5-P-F5-P stack, which is absent or smaller in 12 and 14.[27] The
intramolecular stacking interaction between the phenyl and
pentafluorophenyl residues is therefore more stabilizing than
the lateral, intermolecular one. This is not surprising given the
different sizes of the contacting surfaces in the two dimen-
sions.
[10] M. Shionoya, K. Tanaka, Bull. Chem. Soc. Jpn. 2000, 73, 1945 1954.
[11] E. Meggers, P. L. Holland, W. B. Tolman, F. E. Romesberg, P. G.
Schultz, J. Am. Chem. Soc. 2000, 122, 10714 10715.
[12] H. Weizman, Y. Tor, J. Am. Chem. Soc. 2001, 123, 3375 3376.
[13] C. Brotschi, A. H‰berli, C. J. Leumann, Angew. Chem. 2001, 113,
3101 3103; Angew. Chem. Int. Ed. 2001, 40, 3012 3014.
[14] F. Cozzi, F. Ponzini, R. Annunziata, M. Cinquini, J. S. Siegel, Angew.
Chem. 1995, 107, 1092 1094; Angew. Chem. Int. Ed. Engl. 1995, 34,
1019 1020.
[15] R. E. Gaillard, J. F. Stoddart, A. J. P. White, B. J. Williams, D. J.
Williams, J. Org. Chem. 1996, 61, 4504 4505.
[16] G. W. Coates, A. R. Dunn, L. M. Henling, D. A. Dougherty, R. H.
Grubbs, Angew. Chem. 1997, 109, 290 293; Angew. Chem. Int. Ed.
Engl. 1997, 36, 248 251.
In conclusion, complementary charge distribution as in the
pentafluorophenyl phenyl C-nucleosides 1 and 2 represents a
novel design principle for artificial base pairs. The results from
this study highlight the importance of favorable intrastrand
stacking interactions in the thermodynamic stabilization of
oligonucleotide duplexes. On the other hand, interstrand
stacking has recently been exploited in a base pair formed
between two bipyridine residues.[13] A combination of these
two features could lead to orthogonal, non-hydrogen bonded,
non-shape complementary base pairs. Experiments towards
this end as well as attempts to replicate the pentafluorophe-
nyl phenyl pair by polymerases are currently under way.
[17] F. Ponzini, R. Zagha, K. Hardcastle, J. S. Siegel, Angew. Chem. 2000,
112, 2413 2415; Angew. Chem. Int. Ed. 2000, 39, 2323 2325.
[18] C.-Y. Kim, P. P. Chandra, A. Jain, D. W. Christianson, J. Am. Chem.
Soc. 2001, 123, 9620 9627.
[19] C. R. Patrick, G. S. Prosser, Nature 1960, 187, 1021.
[20] J. H. Williams, J. K. Cockcroft, A. N. Fitch, Angew. Chem. 1992, 104,
1666 1669; Angew. Chem. Int. Ed. Engl. 1992, 31, 1655 1657.
[21] T. A. Millican, G. A. Mock, M. A. Chauncey, T. P. Patel, M. A. W.
Eaton, J. Gunning, S. D. Cutbush, S. Neidle, J. Mann, Nucleic Acids
Res. 1984, 12, 7435 7453.
[22] U. Wichai, S. Wosky, Org. Lett. 1999, 1, 1173 1176.
[23] The tritylated pentafluorophenyl-b-d-deoxyriboside was deprotected
under acidic conditions (CHCl2COOH, pyrrole, CH2Cl2, RT, 20 min)
1
to give anomerically pure 1. H NMR NOE (400 MHz, [D6]DMSO):
irradiation of the signal for H-C(1’) (5.30 ppm) leads to enhancement
of the signal for H-C(4’) (3.75 ppm), and vice versa.
[24] B. A. Conolly in Oligonucleotides and Analogues: A
Practical Approach (Ed.: F. Eckstein), Oxford Uni-
versity Press, Oxford, 1991, pp. 151 183.
Received: March 18, 2002 [Z18923]
[25] The identity of the oligonucleotides synthesized was
confirmed by ESI mass spectrometry.
[26] Substituting the phenyl part of a F5 P base pair by a
naphthalene or indole unit could possibly resolve this
problem. Experiments with the corresponding modi-
fied oligonucleotides are under way.
[27] Experiments with the non-self-complementary 10-
mer duplexes d(CTGF5PF5PGAC)¥d(GTCF5PF5P-
CAG) and d(CTGF5F5F5F5GAC)¥d(GTCPPPPCAG)
were inconclusive since they showed melting temper-
atures below 108C.
Figure 2. Van©t Hoff plot of 1/Tm vs. ln(c) (c in mol LÀ1
) for oligonucleotide
d(CTGF5PF5PCAG) (13). Sequence 13 with four alternating F5 P base pairs in the middle
forms duplexes at concentrations above 3 mm (sloped region, linear regression indicated). In
contrast, sequences d(CTGAF5PTCAG) (12) and d(CTGF5F5PPCAG) (14) form a duplex
only at much higher concentrations.
Angew. Chem. Int. Ed. 2002, 41, No. 17
¹ 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
0044-8249/02/4117-3205 $ 20.00+.50/0
3205