Organic Letters
Letter
Gagosz, F. Adv. Synth. Catal. 2017, 359, 3108. (g) Stefan, E.; Taylor,
R. E. Tetrahedron Lett. 2015, 56, 3416. (h) Jiao, Z.; Zhang, S.; He, C.;
Tu, Y.; Wang, S.; Zhang, F.; Zhang, Y.; Li, H. Angew. Chem., Int. Ed.
2012, 51, 8811. (i) Cambeiro, F.; Lopez, S.; Varela, J. A.; Saa, C.
Angew. Chem., Int. Ed. 2012, 51, 723. (j) Bolte, B.; Gagosz, F. J. Am.
Chem. Soc. 2011, 133, 7696. (k) Jurberg, I. D.; Odabachian, Y.;
Gagosz, F. J. Am. Chem. Soc. 2010, 132, 3543. (l) Mori, K.; Kawasaki,
T.; Sueoka, S.; Akiyama, T. Org. Lett. 2010, 12, 1732. (m) McQuaid,
K. M.; Sames, D. J. Am. Chem. Soc. 2009, 131, 402. (n) Vadola, P. A.;
Sames, D. J. Am. Chem. Soc. 2009, 131, 16525. (o) McQuaid, K. M.;
Long, J. Z.; Sames, D. Org. Lett. 2009, 11, 2972. (p) Shikanai, D.;
Murase, H.; Hata, T.; Urabe, H. J. Am. Chem. Soc. 2009, 131, 3166.
(q) Bhunia, S.; Liu, R. J. Am. Chem. Soc. 2008, 130, 16488.
(r) Bajracharya, G. B.; Pahadi, N. K.; Gridnev, I. D.; Yamamoto, Y. J.
Org. Chem. 2006, 71, 6204. (s) Pastine, S. J.; McQuaid, K. M.; Sames,
D. J. Am. Chem. Soc. 2005, 127, 12180. (t) Yoshimatsu, M.; Hatae, N.;
Shimizu, H.; Kataoka, T. Chem. Lett. 1993, 22, 1491.
(8) The stereochemistry of position C1 for the alcohol substrates
was not determined except for compound 10f. The diastereomeric
ratio of the alcohol starting materials varies with the nature of the
(9) Acetal 2a and aldehyde 2a′ were formed in 54% and 14% yields,
respectively, according to 1H NMR spectroscopy analysis of the crude
residue.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures, spectral data (PDF)
Accession Codes
supplementary crystallographic data for this paper. These data
uk, or by contacting The Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44
1223 336033.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
(10) The initial optimization of the reaction conditions for the 1,5-
hydride transfer was conducted using acetal 6a and trifluoroethanol
was found the optimal solvent for the process. See the Supporting
Author Contributions
§These authors contributed equally.
(11) Zhao, W.; Sun, J. Chem. Rev. 2018, 118, 10349.
(12) The relative steric demands are evaluated on the basis of the A-
values for a phenyl group (2.8 kcal/mol) and a methyl group (1.74
kcal/mol). For A-values of various substituents, see: Eliel, E. L.;
Wilen, S. H.; Doyle, M. P. Basic Organic Stereochemistry; Wiley, 2001;
p 444.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(13) The stereochemistry of the major isomer of 3f was determined
details.
(14) Synthesis of 10f was accomplished by a sequence of
diastereoselective α-methylation of ketone followed by addition of
MeMgBr to the carbonyl group as shown below (for details, see the
by X-ray crystallography analysis.
■
This work was supported by funding from Nanyang
Technological University (for S.C.), the Singapore Ministry
of Education (Academic Research Fund Tier 1:2015-T1-001-
040 for S.C.), and the Natural Sciences and Engineering
Research Council (for F.G.). We acknowledge Dr. Yongxin Li
(Division of Chemistry and Biological Chemistry, Nanyang
Technological University) for assistance in X-ray crystallo-
graphic analysis.
REFERENCES
■
(1) Carreira, E. M.; Kvaerno, L. Classics in Stereoselective Synthesis;
Wiley-VCH: Weinheim, 2009.
(2) For recent reviews, see: (a) Bhadra, S.; Yamamoto, H. Chem.
Rev. 2018, 118, 3391. (b) Eppe, G.; Didier, D.; Marek, I. Chem. Rev.
2015, 115, 9175.
(3) For reviews, see: (a) Haibach, M. C.; Seidel, D. Angew. Chem.,
Int. Ed. 2014, 53, 5010. (b) Wang, L.; Xiao, J. Adv. Synth. Catal. 2014,
356, 1137. (c) Peng, B.; Maulide, N. Chem. - Eur. J. 2013, 19, 13274.
(d) Wang, M. ChemCatChem 2013, 5, 1291. (e) Pan, S. C. Beilstein J.
Org. Chem. 2012, 8, 1374. (f) Tobisu, M.; Chatani, N. Angew. Chem.,
Int. Ed. 2006, 45, 1683.
(4) Hill, R. K.; Carlson, R. M. J. Am. Chem. Soc. 1965, 87, 2772.
(5) Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447.
(6) For reviews on generation and use of carbocations, see:
(a) Akiyama, T.; Mori, K. Chem. Rev. 2015, 115, 9277. (b) Naredla,
R. R.; Klumpp, D. A. Chem. Rev. 2013, 113, 6905.
(7) For selected examples on the use of alkyl ethers as hydride
donors, see: (a) Li, J.; Preinfalk, A.; Maulide, N. J. Am. Chem. Soc.
2019, 141, 143. (b) Bauer, A.; Maulide, N. Org. Lett. 2018, 20, 1461.
(c) Bauer, A.; Maulide, N. Tetrahedron 2018, 74, 6883.
(d) Gandamana, D. A.; Wang, B.; Tejo, C.; Bolte, B.; Gagosz, F.;
Chiba, S. Angew. Chem., Int. Ed. 2018, 57, 6181. (e) Mori, K.;
Umehara, N.; Akiyama, T. Chem. Sci. 2018, 9, 7327. (f) Zhao, Q.;
(15) The stereochemistry of the major isomer of 11f was determined
by the X-ray crystallography analysis of its 4-bromobenzoate
(16) Partial loss of diastereoselectivity (formation of 1,4-cis isomer)
is most due to the epimerization of the oxocarbenium ion
intermediates.
(17) The stereochemistry of the major isomer of 13b was
determined by the X-ray crystallography analysis. See the Supporting
D
Org. Lett. XXXX, XXX, XXX−XXX