Journal of the American Chemical Society
Page 12 of 13
4. Fan, X.; Ge, Y.; Lin, F.; Yang, Y.; Zhang, G.; Ngai, W. S. C.; Lin,
Modification. J. Am. Chem. Soc. 2008, 130, 9642-9643. (c) Ai, H. W.;
Z.; Zheng, S.; Wang, J.; Zhao, J.; Li, J.; Chen, P. R. Optimized Te-
trazine Derivatives for Rapid Bioorthogonal Decaging in Living Cells.
Angew. Chem., Int. Ed. 2016, 55, 14046-14050.
Shen, W.; Brustad, E.; Schultz, P. G. Genetically Encoded Alkenes in
Yeast. Angew. Chem., Int. Ed. 2010, 49, 935-937. (d) Lin, Y.A.;
Chalker, J.M.; Davis, B.G. Olefin Cross-Metathesis on Proteins: Inves-
tigation of Chalcogen Effects and Guiding Principles in Metathesis
Partner Selection. J. Am. Chem. Soc. 2010, 132, 16805-16811. (e)
Chalker, J.M.; Lin, Y.A.; Boutureira, O.; Davis, B.G Enabling Olefin
Metathesis on Proteins: Chemical Methods for Installation of S-Allyl
Cysteine. Chem Comm. 2009, 3714-3716.
1
2
3
4
5
6
7
8
5. Versteegen,R. M.; Rossin, R.; ten Hoeve, W.; Janssen, H. M.;
Robillard, M. S. Click to Release: Instantaneous Doxorubicin Elimina-
tion Upon Tetrazine Ligation. Angew. Chem. Int. Ed. 2013, 52, 14112-
14116.
6. Peplow, M. Click Chemistry Targets Antibody-Drug Conjugates for
the Clinic. Nature Biotechnol. 2019, 37, 835-837.
11. Jeschek, M.; Reuter, R.; Heinisch, T.; Trindler, C.; Klehr, J.; Panke,
S.; Ward, T.R. Directed Evolution of Artificial Metalloenzymes for In
Vivo Metathesis. Nature 2015, 537, 661-665.
9
7. (a) Sasmal, P.K.; Streu, C.N.; Meggers, E. Metal Complex Catalysis
in Living Biological Systems. Chem. Commun., 2013, 49, 1581-1587.
(b) Vꢀlker, T.; Dempwolff, F.; Graumann, P. L.; Meggers, E. Progress
Towards Bioorthogonal Catalysis with Organometallic Compounds.
Angew. Chem., Int. Ed. 2014, 53, 10536-10540. (c) Streu, C.; Meggers,
E. Ruthenium-Induced Allylcarbamate Cleavage in Living Cells. An-
gew. Chem., Int. Ed. 2006, 45, 5645-5648. (d) Yusop, R. M.; Unciti-
Broceta, A.; Johansson, E. M. V.; Sꢁnchez-Martín, R. M.; Bradley, Pal-
ladium-Mediated Intracellular Chemistry. Nat. Chem. 2011, 3, 239-
243. (e) Bray, T. L.; Salji, M.; Brombin, A.; Pꢂrez-Lꢃpez, A. M.; Ru-
bio-Ruiz, B.; Galbraith, L. C. A.; Patton, E. E.; Leung, H. Y.; Unciti-
Broceta, A. Bright Insights into Palladium-Triggered Local Chemo-
therapy. Chem. Sci. 2018, 9, 7354-7361. (f) Indrigo, E.; Clavadetscher,
J.; Chankeshwara, S. V.; Lilienkampf, A.; Bradley, M. Palladium-Me-
diated In Situ Synthesis of an Anticancer Agent. Chem. Commun. 2016,
52, 14212-14214. (g) Pérez-López, A. M.; Rubio-Ruiz, B.; Sebastián,
V.; Hamilton, L.; Adam, C.; Bray, T. L.; Irusta, S.; Brennan, P. M.;
Lloyd-Jones, G. C.; Sieger, D.; Santamaría, J.; Unciti-Broceta, A.
Gold-Triggered Uncaging Chemistry in Living Systems. Angew.
Chem., Int. Ed. 2017, 56, 12548-12552. (h) Vidal, C.; Tomꢁs-Gamasa,
M.; Destito, P.; Lꢃpez, F.; Mascareꢄas, J. L. Concurrent and Orthogo-
nal Gold (I) and Ruthenium (II) Catalysis Inside Living Cells. Nat.
Commun. 2018, 9, 1913-1921. (i) Rebelein, J.G.; Ward, T.R.; In Vivo
Catalyzed New-To-Nature Reactions. Curr. Opin. Biotechnol. 2018,
53, 106-114.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
12. (a) Chen, Y.; Dias, H. V. R.; Lovely, C. J. Synthesis of Fused Bi-
cyclic Imidazoles by Ring-Closing Metathesis. Tetrahedron Lett. 2003,
44, 1379-1382. (b) Huang, K-S.; Wang, E-C.; Chen, H-M. Synthesis of
Substituted Naphthalenes and Naphthols. J. Chin. Chem. Soc. 2004, 51,
585-605. (c) van Otterlo, W.A.L.; de Koning, C.B. Metathesis in The
Synthesis of Aromatic Compounds. Chem. Rev. 2009, 109, 3743-3782.
(d) Donohoe, T.J.; Orr, A.J.; Bingham, M. Ring-Closing Metathesis as
a Basis for the Construction of Aromatic Compounds. Angew. Chem.
Int. Ed. 2006, 45, 2664-2670.
13. Wallace, S.; Balskus, E.P. Opportunities for Merging Chemical and
Biological Synthesis. Curr. Opin. Biotechnol. 2014, 30, 1-8.
14. Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understand-
ing the Warburg Effect: The Metabolic Requirements of Cell Prolifer-
ation. Science 2009, 324, 1029-1033.
15. (a) Lin, Y.A.; Davis, B.G. The Allylic Chalcogen Effect in Olefin
Metathesis. Beilstein J. Org. Chem. 2010, 6, 1219-1228. (b) Chalker,
J.M. Allyl Sulfides: Reactive Substrates for Olefin Metathesis. Aust. J.
Chem. 2015, 68, 1801-1809.
16. Alouane, A.; Labruere, R.; Le Saux, T.; Schmidt, F.; Jullien, L.
Self-Immolative Spacers: Kinetics, Aspects, Structure-Property Rela-
tionships, and Applications. Angew. Chem., Int. Ed. 2015, 54, 7492-
7509.
17. Ogba, M., Warner, N.C., O’Leary, D. J., Grubbs, R. H. Recent Ad-
vance in Ruthenium-Based Olefin Metathesis. Chem. Soc. Rev., 2018,
47, 4510-4544.
8. (a) Binder, J. B.; Raines, R. T. Olefin Metathesis for Chemical Biol-
ogy. Curr. Opin. Chem. Biol. 2008, 12, 767-773. (b) Lin, Y.A.; Davis,
B.G. Vignette: Extending the Application of Metathesis in Chemical
Biology–The development of Site-Selective Peptide and Protein Mod-
ifications. Handbook of Metathesis Applications in Organic Synthesis,
2nd ed.; Grubbs, R.H., O’Leary, D.J., Eds.; Wiley-VCH: Weinheim,
Germany, 2015; Volume 2, Chapter 3; pp 295-309. (c) Sabatino, V.;
Ward, T.R. Aqueous Olefin Metathesis: Recent Developments and Ap-
plications. Beilstein J. Org. Chem. 2019, 15, 445-468. (d) Isenegger,
P.G.; Davis, B.G. Concepts of Catalysis in Site-Selective Protein Mod-
ifications. J. Am Chem Soc. 2019, 141, 8005-8013. (e) Moellering, R.
E.; Cornejo, M.; Davis, T. N.; Del Bianco, C.; Aster, J. C.; Blacklow,
S. C.; Kung, A. L.; Gilliland, D. G.; Verdine, G. L.; Bradner, J. E. Di-
rect Inhibition of the NOTCH Transcription Factor Complex. Nature
2009, 462, 182-188.
18. Ritz, D.; Beckwith, J. Roles of Thiol-Redox Pathways in Bacteria.
Annu. Rev. Microbiol. 55, 21-48 (2001).
19. Deliz Liang, A.; Serrano-Plana, J.; Peterson, R.L.; Ward, T.R. Ar-
tificial Metalloenzymes Based on the Biotin-Streptavidin Technology:
Enzymatic Cascades and Directed Evolution. Acc. Chem. Res. 2019,
52, 585-595.
9. (a) Burtscher, D.; Grela, K. Aqueous Olefin Metathesis. Angew.
Chem. Int. Ed. 2009, 48, 442-454. (b) Jana, A.; Grela, K. Forged and
Fashioned for Faithfulness–Ruthenium Olefin Metathesis Catalysts
Bearing Ammonium Tags. Chem. Commun. 2018, 54, 122-139. (c) To-
masek, J.; Schatz, J. Olefin Metathesis in Aqueous Media. Green
Chem. 2013, 15, 2317-2338. (d) Jordan, J.P.; Grubbs, R.H. Small-Mol-
ecule N-Heterocyclic-Carbene-Containing Olefin-Metathesis Catalysts
for Use in Water. Angew. Chem. Int. Ed. 2007, 46, 5152-5155. (e)
Neary, W.; Isais, T.A.; Kennemur, J. Self-Immolative Bottlebrush Pol-
ypentenamers and their Macromolecular Metamorphosis. J. Am. Chem.
Soc.
2019,
XXXX,
XXX,
XXX-XXX.
10. (a) Bhushan, B.; Lin, Y.A.; Phanumartwiwath, A.; Yang, N.; Bil-
yard, M.; Tanaka, T.; Hudson, K.; Lercher, L.; Stegmann, M.; Moham-
med, M.; Davis, B.G. Genetic Incorporation of Olefin Cross-Metathe-
sis Reaction Tags for Protein Modification. J. Am. Chem. Soc. 2018,
140, 14599-14603. (b) Lin, Y.A.; Chalker, J.M.; Floyd, N.; Bernardes,
G.J.L.; Davis, B.G. Allyl Sulphides are Privileged Substrates in Aque-
ous Cross-Metathesis: Application to Site-Selective Protein
ACS Paragon Plus Environment